数学学案:课堂探究集合之间的关系_第1页
数学学案:课堂探究集合之间的关系_第2页
数学学案:课堂探究集合之间的关系_第3页
数学学案:课堂探究集合之间的关系_第4页
数学学案:课堂探究集合之间的关系_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精课堂探究探究一判断集合之间的关系判断两个集合A,B之间是否存在包含关系有以下几个步骤:第一步:明确集合A,B中元素的特征.第二步:分析集合A,B中的元素之间的关系.(1)当集合A中的元素都属于集合B时,有A⊆B.(2)当集合A中的元素都属于集合B,但集合B中至少有一个元素不属于集合A时,有AB。(3)当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有A=B.(4)当集合A中至少有一个元素不属于集合B,并且集合B中至少也有一个元素不属于集合A时,有A⃘B,且B⃘A,即集合A,B互不包含.【典型例题1】(1)设M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为()A.P⊆N⊆M⊆Q B.Q⊆M⊆N⊆PC.P⊆M⊆N⊆Q D.Q⊆N⊆M⊆P(2)有下列关系:①0∈{0};②∅{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1 B.2 C.3 D.4解析:(1)由于四边形包括正方形、菱形、平行四边形,故集合M,N,Q均为P的子集,再结合正方形、菱形、平行四边形的概念易知Q⊆M⊆N⊆P.(2)①中根据元素与集合的关系可知0∈{0}正确;②中由空集是任意非空集合的真子集可知∅{0}正确;③中集合{0,1}的元素是数,而集合{(0,1)}的元素是点,因此没有包含关系,故③错误;④中集合中的元素是点,而点的坐标有顺序性,因此{(a,b)}≠{(b,a)},故④错误.综上,应选B.答案:(1)B(2)B探究二确定集合的子集、真子集1.(1)集合A是集合B的真子集,需要满足以下两个条件:①集合A是集合B的子集;②存在元素x∈B,但x∉A。所以,如果集合A是集合B的真子集,那么集合A一定是集合B的子集,反之,不成立.(2)若集合A={1,2},B={1,2,3},则A是B的子集,也是真子集,用符号A⊆B与AB均可,但用AB更准确.2.与子集、真子集个数有关的四个结论假设集合A中含有n个元素,则有:(1)A的子集的个数为2n;(2)A的真子集的个数为2n-1;(3)A的非空子集的个数为2n-1;(4)A的非空真子集的个数为2n-2.【典型例题2】集合A={x|0≤x〈3,且x∈N}的真子集的个数是()A.16 B.8 C.7 D.4解析:因为0≤x〈3,x∈N,所以x=0,1,2,即A={0,1,2},所以A的真子集的个数为23-1=7。答案:C【典型例题3】求满足条件{x|x2+5=0}M⊆{x|x2-1=0}的集合M。思路分析:M是集合{x|x2-1=0}的子集,又{x|x2+5=0}是空集,它是M的真子集,所以M不是空集.因此问题归结为求{x|x2-1=0}的非空子集.解:因为{x|x2+5=0}=∅,{x|x2-1=0}={-1,1},其非空子集为{-1},{1},{-1,1}.探究三两个集合相等及其应用1.判断两个集合相等可以看两个集合中的元素是否相同,有两种方法:(1)将两个集合的元素一一列举出来,进行比较;(2)看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两个集合相等.2.两个集合相等的问题一般转化为解方程(组),但要注意最后需检验,看是否满足集合元素的互异性.3.找好问题的切入点是解决集合相等问题的关键.【典型例题4】已知集合A={2,x,y},B={2x,2,y2},若A=B,求x,y的值.思路分析:A=B→列方程组→解方程组求x,y解:∵A=B,∴集合A与集合B中的元素相同.∴或解得或或验证得,当x=0,y=0时,A={2,0,0},这与集合元素的互异性相矛盾,舍去.∴x,y的取值为或探究四根据子集的关系,确定参数的值对于两个集合A,B,若A或B中含有待确定的参数(字母),且A⊆B或A=B,则集合B中的元素与集合A中的元素具有“包含关系”,解决这类问题时常采用分类讨论和数形结合的方法.1.分类讨论是指:(1)A⊆B在未指明集合A非空时,应分A=∅和A≠∅两种情况来讨论.(2)因为集合中的元素是无序的,由A⊆B或A=B得出的两个集合中的元素对应相等的情况可能有多种,因此需要分类讨论.2.数形结合是指对A≠∅这种情况,在确定参数时,需要借助数轴来完成,将两个集合在数轴上表示出来,分清实心点与空心点,确定两个集合之间的包含关系,列不等式(组)求出参数.3.解决集合中含参数问题时,最后结果要注意验证.验证是指:(1)分类讨论求得的参数的值,还需要代入原集合中看是否满足互异性.(2)所求参数的取值范围能否取到端点值.【典型例题5】已知集合P={x|x2+x-6=0},Q={x|ax+1=0},满足QP,求a的取值.思路分析:先明确集合P,再结合QP对Q中的a分两种情况讨论.解:P={x|x2+x-6=0}={2,-3}.当a=0时,Q={x|ax+1=0}=∅,QP成立.当a≠0时,Q={x|ax+1=0}=,要使QP成立,则有-=2或-=-3,即a=-或a=.综上所述,a=0或a=-或a=。反思本题易漏掉当a=0时的情况,要清楚当a=0时,ax+1=0是无解的,即此时Q为空集.探究五易错辨析易错点忽略B为∅这一特殊情况而致误【典型例题6】集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m满足的条件;(2)当x∈Z时,求A的非空真子集的个数.错解:(1)由题意并结合数轴(如下图),得解得2≤m≤3。所以实数m满足的条件是2≤m≤3.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以A的非空真子集的个数为28-1=255.错因分析:(1)中忽略了B=∅时的情形;(2)中误认为是求A的真子集或A的非空子集的个数.正解:(1)①当B=∅时,∅⊆A,符合题意,此时m+1>2m-1,解得m〈2。②当B≠∅时,由题意结合数轴(如下图).得解得2≤m≤3。综合①②,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论