![2024年广东省广州市中考数学试卷含答案_第1页](http://file4.renrendoc.com/view14/M08/22/24/wKhkGWdEHFeAMuVIAAFdEJ7m9NM723.jpg)
![2024年广东省广州市中考数学试卷含答案_第2页](http://file4.renrendoc.com/view14/M08/22/24/wKhkGWdEHFeAMuVIAAFdEJ7m9NM7232.jpg)
![2024年广东省广州市中考数学试卷含答案_第3页](http://file4.renrendoc.com/view14/M08/22/24/wKhkGWdEHFeAMuVIAAFdEJ7m9NM7233.jpg)
![2024年广东省广州市中考数学试卷含答案_第4页](http://file4.renrendoc.com/view14/M08/22/24/wKhkGWdEHFeAMuVIAAFdEJ7m9NM7234.jpg)
![2024年广东省广州市中考数学试卷含答案_第5页](http://file4.renrendoc.com/view14/M08/22/24/wKhkGWdEHFeAMuVIAAFdEJ7m9NM7235.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)四个数﹣10,﹣1,0,10中,最小的数是()A.﹣10 B.﹣1 C.0 D.102.(3分)下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.(3分)若a≠0,则下列运算正确的是()A.+= B.a3•a2=a5 C.•= D.a3÷a2=14.(3分)若a<b,则()A.a+3>b+3 B.a﹣2>b﹣2 C.﹣a<﹣b D.2a<2b5.(3分)为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20 B.用地面积在8<x≤12这一组的公园个数最多 C.用地面积在4<x≤8这一组的公园个数最少 D.这50个公园中有一半以上的公园用地面积超过12公顷6.(3分)某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A.1.2x+1100=35060 B.1.2x﹣1100=35060 C.1.2(x+1100)=35060 D.x﹣1100=35060×1.27.(3分)如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为()A.18 B.9 C.9 D.68.(3分)函数y1=ax2+bx+c与y2=的图象如图所示,当()时,y1,y2均随着x的增大而减小.A.x<﹣1 B.﹣1<x<0 C.0<x<2 D.x>19.(3分)如图,⊙O中,弦AB的长为4,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O外 D.无法确定10.(3分)如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是()A.π B.π C.2π D.π二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)如图,直线l分别与直线a,b相交,a∥b,若∠1=71°,则∠2的度数为.12.(3分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=20.3,R2=31.9,R3=47.8,I=2.2时,U的值为.13.(3分)如图,▱ABCD中,BC=2,点E在DA的延长线上,BE=3,若BA平分∠EBC,则DE=.14.(3分)若a2﹣2a﹣5=0,则2a2﹣4a+1=.15.(3分)定义新运算:a⊗b=例如:﹣2⊗4=(﹣2)2﹣4=0,2⊗3=﹣2+3=1.若x⊗1=﹣,则x的值为.16.(3分)如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数y=(x>0)的图象上,A(1,0),C(0,2).将线段AB沿x轴正方向平移得线段A'B'(点A平移后的对应点为A′),A'B'交函数y=(x>0)的图象于点D,过点D作DE⊥y轴于点E,则下列结论:①k=2;②△OBD的面积等于四边形ABDA′的面积;③AE的最小值是;④∠B'BD=∠BB'O.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:=.18.(4分)如图,点E,F分别在正方形ABCD的边BC,CD上,BE=3,EC=6,CF=2.求证:△ABE∽△ECF.19.(6分)如图,Rt△ABC中,∠B=90°.(1)尺规作图:作AC边上的中线BO(保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO绕点O逆时针旋转180°得到DO,连接AD,CD.求证:四边形ABCD是矩形.20.(6分)关于x的方程x2﹣2x+4﹣m=0有两个不等的实数根.(1)求m的取值范围;(2)化简:÷•.21.(8分)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A,B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.22.(10分)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A点垂直下降到B点,再垂直下降到着陆点C,从B点测得地面D点的俯角为36.87°,AD=17米,BD=10米.(1)求CD的长;(2)若模拟装置从A点以每秒2米的速度匀速下降到B点,求模拟装置从A点下降到B点的时间.参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75.23.(10分)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=(k≠0)中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm,请根据(2)中求出的函数解析式,估计这个人的身高.24.(12分)如图,在菱形ABCD中,∠C=120°.点E在射线BC上运动(不与点B,点C重合),△AEB关于AE的轴对称图形为△AEF.(1)当∠BAF=30°时,试判断线段AF和线段AD的数量和位置关系,并说明理由;(2)若AB=6+6,⊙O为△AEF的外接圆,设⊙O的半径为r.①求r的取值范围;②连接FD,直线FD能否与⊙O相切?如果能,求BE的长度;如果不能,请说明理由.25.(12分)已知抛物线G:y=ax2﹣6ax﹣a3+2a2+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y=m2x+n过点C(3,1),交线段AB于点D,记△CDA的周长为C1,△CDB的周长为C2,且C1=C2+2.(1)求抛物线G的对称轴;(2)求m的值;(3)直线l绕点C以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l′,当l′∥AB时,直线l′交抛物线G于E,F两点.①求t的值;②设△AEF的面积为S,若对于任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.
2024年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)四个数﹣10,﹣1,0,10中,最小的数是()A.﹣10 B.﹣1 C.0 D.10【分析】利用有理数大小的比较方法:1、在数轴上表示的两个数,右边的总比左边的数大.2、正数都大于零,负数都小于零,正数大于负数.3、两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.按照从小到大的顺序排列找出结论即可.【解答】解:∵﹣10<﹣1<0<10,∴最小的数是:﹣10.故选:A.【点评】本题考查了有理数的大小比较,掌握正数都大于零,负数都小于零,正数大于负数,两个正数比较大小,绝对值大的数大,两个负数比较大小,绝对值大的数反而小是本题的关键.2.(3分)下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.【分析】根据中心对称的性质解答即可.【解答】解:由题可知,A、B、D不是中心对称图形,C是中心对称图形图形.故选:C.【点评】本题考查的是中心对称,正方形的性质及全等三角形的性质,熟知把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点是解题的关键.3.(3分)若a≠0,则下列运算正确的是()A.+= B.a3•a2=a5 C.•= D.a3÷a2=1【分析】利用合并同类项法则,同底数幂乘法及除法法则,分式的乘法法则计算即可.【解答】解:+==,则A不符合题意;a3•a2=a5,则B符合题意;•=,则C不符合题意;a3÷a2=a,则D不符合题意;故选:B.【点评】本题考查合并同类项,同底数幂乘法及除法,分式的乘法,熟练掌握相关运算法则是解题的关键.4.(3分)若a<b,则()A.a+3>b+3 B.a﹣2>b﹣2 C.﹣a<﹣b D.2a<2b【分析】利用不等式的性质逐项判断即可.【解答】解:若a<b,两边同时加上3得a+3<b+3,则A不符合题意;若a<b,两边同时减去2得a﹣2<b﹣2,则B不符合题意;若a<b,两边同时乘﹣1得﹣a>﹣b,则C不符合题意;若a<b,两边同时乘2得2a<2b,则D符合题意;故选:D.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.5.(3分)为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20 B.用地面积在8<x≤12这一组的公园个数最多 C.用地面积在4<x≤8这一组的公园个数最少 D.这50个公园中有一半以上的公园用地面积超过12公顷【分析】用样本容量50分别减去其它四组的频数可得a的值;根据频数分布直方图可知用地面积在8<x≤12这一组的公园个数最多,用地面积在0<x≤4这一组的公园个数最少,这50个公园中有20个公园用地面积超过12公顷.【解答】解:由题意可得,a=50﹣4﹣16﹣12﹣8=10,故选项A不符合题意;由频数分布直方图可知,用地面积在8<x≤12这一组的公园个数最多,故选项B符合题意;由频数分布直方图可知,用地面积在0<x≤4这一组的公园个数最少,故选项C不符合题意;由频数分布直方图可知,这50个公园中有20个公园用地面积超过12公顷,没有达到一半,故选项D不符合题意.故选:B.【点评】本题主要考查了频数分布直方图,解决问题的关键是在频数分布直方图中获取数据进行计算.6.(3分)某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A.1.2x+1100=35060 B.1.2x﹣1100=35060 C.1.2(x+1100)=35060 D.x﹣1100=35060×1.2【分析】等量关系:今年5月交付新车的数量=1.2×去年5月交付的新车数量+1100.【解答】解:根据题意,得1.2x+1100=35060.故选:A.【点评】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是读懂题意,找到等量关系,列出方程.7.(3分)如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为()A.18 B.9 C.9 D.6【分析】由等腰直角三角形的性质可得AD=BD=CD,∠BAD=∠C=45°,S△ABC=×6×6=18,由“SAS”可证△ADE≌△CDF,可得S△ADE=S△CDF,即可求解.【解答】解:如图,连接AD,∵∠BAC=90°,AB=AC=6,D为边BC的中点,∴AD=BD=CD,∠BAD=∠C=45°,S△ABC=×6×6=18,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴S△ADE=S△CDF,∴四边形AEDF的面积=S△ADC=S△ABC=9,故选:C.【点评】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.8.(3分)函数y1=ax2+bx+c与y2=的图象如图所示,当()时,y1,y2均随着x的增大而减小.A.x<﹣1 B.﹣1<x<0 C.0<x<2 D.x>1【分析】根据二次函数和反比例函数图象解答即可.【解答】解:根据二次函数图象当x>1时,y1随着x的增大而减小,同样当x>1时,反比例函数y2随着x的增大而减小.故选:D.【点评】本题考查了反比例函数与二次函数的图象与性质,数形结合是解答本题的关键.9.(3分)如图,⊙O中,弦AB的长为4,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O外 D.无法确定【分析】先根据垂径定理得出AD=BD=AB,再由∠ABC=30°得出∠AOD=2∠B=60°,故∠A=30°,可知OA=2OD,设OD=x,则OA=2x,利用勾股定理求出x的值,进而可得出OA的长,根据点与圆的位置关系即可得出结论.【解答】解:设AB与OC交于点D,∵弦AB的长为4,OC⊥AB,∴AD=BD=AB=2,∵∠ABC=30°,∴∠AOD=2∠B=60°,∴∠A=90°﹣60°=30°,∴OA=2OD,设OD=x,则OA=2x,在Rt△AOD中,OD2+AD2=OA2,即x2+(2)2=(2x)2,解得x=±2(负值舍去),∴OA=2x=4,∵OP=5,∴OP>OA,∴点P在圆外.故选:C.【点评】本题考查的是点与圆的位置关系,垂径定理及勾股定理,圆周角定理,熟知点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r是解题的关键.10.(3分)如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是()A.π B.π C.2π D.π【分析】根据扇形的弧长公式可得圆锥的底面周长,进而得出底面半径,再根据勾股定理求出圆锥的高,然后根据圆锥的体积公式计算即可.【解答】解:由题意得,圆锥的底面圆周长为=2π,故圆锥的底面圆的半径为=1,所以圆锥的高为:=,该圆锥的体积是:=π.故选:D.【点评】本题考查了几何体的展开图,关键是掌握圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)如图,直线l分别与直线a,b相交,a∥b,若∠1=71°,则∠2的度数为109°.【分析】由邻补角的性质得到∠3=180°﹣71°=109°,由平行线的性质推出∠2=∠3=109°.【解答】解:∵∠1=71°,∴∠3=180°﹣71°=109°,∵a∥b,∴∠2=∠3=109°.故答案为:109°.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠2=∠3=109°.12.(3分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=20.3,R2=31.9,R3=47.8,I=2.2时,U的值为220.【分析】根据题干条件代值即可.【解答】解:由题意可得U=2.2×(20.3+31.9+47.8)=220.故答案为:220.【点评】本题主要考查有理数的混合运算,根据题意列出式子是解题关键.13.(3分)如图,▱ABCD中,BC=2,点E在DA的延长线上,BE=3,若BA平分∠EBC,则DE=5.【分析】由平行四边形的性质得AD∥BC,AD=BC=2,则∠EAB=∠CBA,而∠EBA=∠CBA,所以∠EAB=∠EBA,则AE=BE=3,求得DE=AD+AE=5,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAB=∠CBA,∵BA平分∠EBC,∴∠EBA=∠CBA,∴∠EAB=∠EBA,∴AE=BE=3,∴DE=AD+AE=2+3=5,故答案为:5.【点评】此题重点考查平行四边形的性质、角平分线的定义、“等角对等边”等知识,推导出∠EAB=∠EBA是解题的关键.14.(3分)若a2﹣2a﹣5=0,则2a2﹣4a+1=11.【分析】由已知条件可得a2﹣2a=5,将原式变形后代入数值计算即可.【解答】解:∵a2﹣2a﹣5=0,∴a2﹣2a=5,∴原式=2(a2﹣2a)+1=2×5+1=11,故答案为:11.【点评】本题考查代数式求值,将原式进行正确的变形是解题的关键.15.(3分)定义新运算:a⊗b=例如:﹣2⊗4=(﹣2)2﹣4=0,2⊗3=﹣2+3=1.若x⊗1=﹣,则x的值为﹣或.【分析】根据题目中的新定义,利用分类讨论的方法列出方程,然后求解即可.【解答】解:∵x⊗1=﹣,∴当x≤0时,x2﹣1=﹣,解得x=﹣或x=(不合题意,舍去);当x>0时,﹣x+1=﹣,解得x=;由上可得,x的值为﹣或,故答案为:﹣或.【点评】本题考查一元一次方程的应用、新定义,解答本题的关键是明确题意,列出相应的方程.16.(3分)如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数y=(x>0)的图象上,A(1,0),C(0,2).将线段AB沿x轴正方向平移得线段A'B'(点A平移后的对应点为A′),A'B'交函数y=(x>0)的图象于点D,过点D作DE⊥y轴于点E,则下列结论:①k=2;②△OBD的面积等于四边形ABDA′的面积;③AE的最小值是;④∠B'BD=∠BB'O.其中正确的结论有①②④.(填写所有正确结论的序号)【分析】根据反比例函数图象上点的坐标特征判断①,根据反比例函数k值几何意义判断②,根据矩形性质判断③④即可.【解答】解:①∵A(1,0),C(0,2),∴B(1,2),∵矩形OABC的顶点B在函数y=(x>0)的图象上,∴k=2,故①正确;②∵点B、点D在函数y=(x>0)的图象上,∴S△AOB=S△AOD=,∴S△OBM=S梯形AMDA′,∴S△OBD=S梯形ABDA′,故②正确;③随着线段AB向右平移的过程,平移后的线段与反比例函数的交点D也逐渐下移,此时过点D作y轴的垂线交点E也下移,所以AE的最小值逐渐趋向于OA的长度,故③错误;④向右平移的过程中角B′BD与角BB′O变化相同,这两个角刚好是矩形BB′ND的对角线与边的夹角,所以是相等,④正确.故正确的结论有①②④.故答案为:①②④.【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、坐标与图形变化,熟练掌握平移性质是关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:=.【分析】利用去分母将原方程化为整式方程,解得x的值后进行检验即可.【解答】解:原方程去分母得:x=6x﹣15,解得:x=3,检验:当x=3时,x(2x﹣5)≠0,故原方程的解为x=3.【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.18.(4分)如图,点E,F分别在正方形ABCD的边BC,CD上,BE=3,EC=6,CF=2.求证:△ABE∽△ECF.【分析】先根据BE=3,EC=6得出BC的长,进而可得出AB的长,由相似三角形的性质即可得出结论.【解答】证明:∵BE=3,EC=6,CF=2,∴BC=3+6=9,∵四边形ABCD是正方形,∴AB=BC=9,∠B=∠C=90°,∵==,=,∴=,∴△ABE∽△ECF.【点评】本题考查的是相似三角形的判定,熟知两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.19.(6分)如图,Rt△ABC中,∠B=90°.(1)尺规作图:作AC边上的中线BO(保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO绕点O逆时针旋转180°得到DO,连接AD,CD.求证:四边形ABCD是矩形.【分析】(1)作线段AC的垂直平分线交AC于O,连接BO,于是得到结论;(2)根据平行四边形的判定和性质以及矩形的判定定理即可得到结论.【解答】(1)解:如图所示,线段BO为AC边上的中线;(2)证明:∵点O是AC的中点,∴AO=CO,∵将中线BO绕点O逆时针旋转180°得到DO,∴BO=DO,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形.【点评】本题考查了作图﹣基本作图,矩形的判定,中心对称图形,熟练掌握矩形的判定定理是解题的关键.20.(6分)关于x的方程x2﹣2x+4﹣m=0有两个不等的实数根.(1)求m的取值范围;(2)化简:÷•.【分析】(1)根据判别式的意义得到Δ=(﹣2)2﹣4(4﹣m)>0,然后解不等式即可.(2)根据m的取值范围化简即可.【解答】解:(1)根据题意得Δ=(﹣2)2﹣4(4﹣m)>0,解得m>3;(2)∵m>3,∴m﹣3>0,∴÷•=••=﹣2.【点评】此题主要考查一元二次方程根的情况与判别式△的关系以及绝对值和分式乘除法的化简,根据题意得到关于m的不等式是解题的关键.21.(8分)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A,B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【分析】(1)根据中位数和众数的定义可得答案.(2)列表可得出所有等可能的结果数以及这2名同学恰好来自同一组的结果数,再利用概率公式可得出答案.【解答】解:(1)将10名A组同学的得分按照从小到大的顺序排列,排在第5和第6名的成绩为84,86,∴A组同学得分的中位数为(84+86)÷2=85(分).由表格可知,A组同学得分的众数为82分.(2)将A组的两名同学分别记为甲、乙,将B组的两名同学分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中这2名同学恰好来自同一组的结果有:甲乙,乙甲,丙丁,丁丙,共4种,∴这2名同学恰好来自同一组的概率为.【点评】本题考查列表法与树状图法、中位数、众数,熟练掌握列表法与树状图法、中位数、众数的定义是解答本题的关键.22.(10分)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A点垂直下降到B点,再垂直下降到着陆点C,从B点测得地面D点的俯角为36.87°,AD=17米,BD=10米.(1)求CD的长;(2)若模拟装置从A点以每秒2米的速度匀速下降到B点,求模拟装置从A点下降到B点的时间.参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75.【分析】(1)根据题意可得:AC⊥CD,BE∥CD,从而可得∠EBD=∠BDC=36.87°,然后在Rt△BCD中,利用锐角三角函数的定义求出CD的长,即可解答;(2)在Rt△BCD中,利用锐角三角函数的定义求出BC的长,然后在Rt△ACD中,利用勾股定理求出AC的长,从而利用线段的和差关系求出AB的长,最后进行计算即可解答.【解答】解:(1)如图:由题意得:AC⊥CD,BE∥CD,∴∠EBD=∠BDC=36.87°,在Rt△BCD中,BD=10米,∴CD=BD•cos36.87°≈10×0.80=8(米),∴CD的长约为8米;(2)在Rt△BCD中,BD=10米,∠BDC=36.87°,∴BC=BD•sin36.87°≈10×0.6=6(米),在Rt△ACD中,AD=17米,CD=8米,∴AC===15(米),∴AB=AC﹣BC=15﹣6=9(米),∵模拟装置从A点以每秒2米的速度匀速下降到B点,∴模拟装置从A点下降到B点的时间=9÷2=4.5(秒),∴模拟装置从A点下降到B点的时间约为4.5秒.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(10分)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=(k≠0)中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm,请根据(2)中求出的函数解析式,估计这个人的身高.【分析】(1)根据表格数据在直角坐标系中描点即可;(2)先排除反比例函数,再利用待定系数法求出一次函数解析式即可;(3)将x=25.8代入一次函数解析式求出y值即可.【解答】解:(1)描点如图示:(2)∵y=(k≠0)转化为k=xy=23×156≠24×163≠25×170≠•••,∴y与x的函数不可能是y=,故选一次函数y=ax+b(a≠0),将点(23,156)、(24,163)代入解析式得:,解得,∴一次函数解析式为y=7x﹣5.(3)当x=25.8时,y=7×25.8﹣5=175.6(cm).答:脚长约为25.8cm,估计这个人的身高为175.6cm.【点评】本题考查了反比例函数与一次函数的应用,熟练掌握待定系数法求一次函数解析式是关键.24.(12分)如图,在菱形ABCD中,∠C=120°.点E在射线BC上运动(不与点B,点C重合),△AEB关于AE的轴对称图形为△AEF.(1)当∠BAF=30°时,试判断线段AF和线段AD的数量和位置关系,并说明理由;(2)若AB=6+6,⊙O为△AEF的外接圆,设⊙O的半径为r.①求r的取值范围;②连接FD,直线FD能否与⊙O相切?如果能,求BE的长度;如果不能,请说明理由.【分析】(1)根据折叠的性质和菱形的性质易得AB=AF=AD再根据角度求出∠DAF=90°即可得证;(2)画出示意图,找到半径r和AE的关系,在求出AE的范围即可求解;(3)画出示意图,利用弦切角定理和圆周角定理以及等腰三角形的性质可求得∠AEF=∠AEB=75°,再在解三角形ABE即可求解.【解答】解:(1)AF=AD,AF⊥AD,理由如下,∵四边形ABCD是菱形,∴AB=AD,∠BAD=∠C=120°,∵△ABE和△AFE关于AE轴对称,∴AB=AF,∴AF=AD,∵∠BAF=30°,∴∠DAF=∠BAD﹣∠BAF=90°,∴AF⊥AD,综上,AF=AD,AF⊥AD.(2)①如图,设△AEF的外接圆圆心为O,连接OA、OE,作OG⊥AE于点G,作AH⊥BC于点H.∵∠AFE=∠ABE=60°,∴∠AOE=120°,∵OA=OE,∴∠OAE=∠OEA=30°,∴OA==AG,∵r=OA=AG=•AE=AE,在Rt△ABH中,AH=AB•sin60°=9+3,∵AE≥AH,且点E不与B、C重合,∴AE≥9+3,且AE≠6+6,∴r≥3+3,且r≠2+6.(3)能相切,此时BE=12,理由如下:假设存在,如图画出示意图,设△AEF的外接圆圆心为O,连接OA、OF,作EH⊥AB于点H,设∠AFD=α,则∠AEF=∠AEB=α(弦切角),∴∠CEF=180°﹣∠AEB﹣∠AEF=180°﹣2α,∵AF=AD,∴∠ADF=∠AFD=α,∴∠DAF=180°﹣2α,∵∠CEF=∠CAF,∴∠CAF=180°﹣2α=∠DAF,∵∠CAD=∠BAD=60°,∴∠CAF=180°﹣2α=∠DAF=30°,∴α=75°,即∠AEB=75°,作EH⊥AB于点H,∵∠B=60°,∴∠BEH=30°,∴∠AEH=∠EAH=45°,设BH=m,则EH=AH=m,BE=2m,∵AB=6+6,∴m+m=6+6,∴m=6,∴BE=12.【点评】本题主要考查了菱形的性质、切线的性质、圆周角定理、等腰三角形的性质、折叠的性质、解直角三角形等知识,熟练掌握相关知识和画出示意图是解题关键.25.(12分)已知抛物线G:y=ax2﹣6ax﹣a3+2a2+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y=m2x+n过点C(3,1),交线段AB于点D,记△CDA的周长为C1,△CDB的周长为C2,且C1=C2+2.(1)求抛物线G的对称轴;(2)求m的值;(3)直线l绕点C以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l′,当l′∥AB时,直线l′交抛物线G于E,F两点.①求t的值;②设△AEF的面积为S,若对于任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.【分析】(1)由抛物线对称轴公式即可求解;(2)由C1=C2+2,即AC+CD+AD=BC+CD+BD+2,得到2xD=xA+xB+2,即可求解;(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,该直线和x轴的夹角为45°,即可求解;②由S=×EF×(yA﹣yE)=EF,而EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),即可求解.【解答】解:(1)由抛物线的表达式知,其对称轴为直线x=﹣=﹣=3;(2)直线l:y=m2x+n过点C(3,1),则该直线的表达式为:y=m2(x﹣3)+1,当y=2时,2=m2(x﹣3)+1,则xD=+3,∵C1=C2+2,即AC+CD+AD=BC+CD+BD+2,其中,AC=BC,上式变为:AD=BD+2,即2xD=xA+xB+2,而函数的对称轴为直线x=3,由函数的对称性知,xA+xB=2×3=6,即2xD=xA+xB+2=8,则xD=4=+3,解得:m=±1;(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,该直线和x轴的夹角为45°,则t=45÷3=15(秒);②由①知,l为:y=1,如下图:则S=×EF×(yA﹣yE)=EF,联立直线l和抛物线的表达式得:ax2﹣6ax﹣a3+2a2+1=1,即x2﹣6x﹣a2+2a=0,设点E、F的横坐标为m,n,则m+n=6,nm=﹣a2+2a,则EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),则S=EF==≥2,当a=1时,等号成立,即k的最大值为:2,a=1,则抛物线的表达式为:y=x2﹣6x+2.【点评】本题考查的是二次函数综合运用,涉及到二次函数的图象和性质、周长的确定、点的对称性、面积的计算等,灵活运用二次函数的性质是解题的关键.2024年广东省深圳市中考数学试卷(回忆版)一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.(3分)下列用七巧板拼成的图案中,为中心对称图形的是()A. B. C. D.2.(3分)如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.a B.b C.c D.d3.(3分)下列运算正确的是()A.(﹣m3)2=﹣m5 B.m2n•m=m3n C.3mn﹣m=3n D.(m﹣1)2=m2﹣14.(3分)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A. B. C. D.5.(3分)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为()A.40° B.50° C.60° D.70°6.(3分)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.①② B.①③ C.②③ D.只有①7.(3分)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为()A. B. C. D.8.(3分)如图,为了测量某电子厂的高度,小明用高1.8m的测量仪EF测得顶端A的仰角为45°,小军在小明的前面5m处用高1.5m的测量仪CD测得顶端A的仰角为53°,则电子厂AB的高度为()(参考数据:,,A.22.7m B.22.4m C.21.2m D.23.0m二、填空题(本大题共5小题,每小题3分,共15分)9.(3分)一元二次方程x2﹣3x+a=0的一个解为x=1,则a=.10.(3分)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可)11.(3分)如图,在矩形ABCD中,,O为BC中点,OE=AB=4,则扇形EOF的面积为.12.(3分)如图,在平面直角坐标系中,四边形AOCB为菱形,,且点A落在反比例函数上,点B落在反比例函数上,则k=.13.(3分)如图,在△ABC中,AB=BC,.D为BC上一点,且满足,过D作DE⊥AD交AC延长线于点E,则=.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.(5分)计算:.15.(7分)先化简,再代入求值:,其中.16.(8分)据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50学校B:(1)学校平均数众数中位数方差A4883.299B48.4354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.(8分)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,如图为购物车叠放在一起的示意图,若一辆购物车车身长1m,每增加一辆购物车,车身增加0.2m.问题解决任务1若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.(9分)如图,在△ABD中,AB=BD,⊙O为△ABD的外接圆,BE为⊙O的切线,AC为⊙O的直径,连接DC并延长交BE于点E.(1)求证:DE⊥BE;(2)若AB=5,BE=5,求⊙O的半径.19.(12分)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y012.2546.259(Ⅱ)描点:请将表格中的(x,y)描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a(x﹣h)2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a(x﹣h)2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B′的坐标为;②将点B′坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为(h,k).①此时点B的坐标为;②将点B坐标代入y=a(x﹣h)2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2(x+h)2+k和C2:y2=a(x+h)2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,若AB∥x轴且AB=4,求a的值.20.(12分)垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图所示,四边形ABCD为“垂中平行四边形”,,CE=2,则AE=;AB=;(2)如图2,若四边形ABCD为“垂中平行四边形”,且AB=BD,猜想AF与CD的关系,并说明理由;(3)①如图3所示,在△ABC中,BE=5,CE=2AE=12,BE⊥AC交AC于点E,请画出以BC为边的垂中平行四边形,要求:点A在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若△ABC关于直线AC对称得到△AB'C,连接CB',作射线CB'交①中所画平行四边形的边于点P,连接PE,请直接写出PE的值.
2024年广东省深圳市中考数学试卷(回忆版)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.(3分)下列用七巧板拼成的图案中,为中心对称图形的是()A. B. C. D.【分析】根据中心对称图形的定义即可得出结论.【解答】解:选项A、D中的图形既不是轴对称图形也不是中心对称图形,不符合题意;选项B中的图形是轴对称图形,不是中心对称图形,不符合题意;选项C中的图形是中心对称图形,符合题意;故选:C.【点评】本题考查了中心对称图形的定义,正方形的性质,熟知正方形是中心对称图形是解题的关键.2.(3分)如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.a B.b C.c D.d【分析】观察a,b,c,d在数轴上的位置,根据实数在数轴上,从左到右是越来越大,从而进行解答即可.【解答】解:∵实数在数轴上,从左到右是越来越大,实数a在数轴的最左边,∴最小的实数为a,故选:A.【点评】本题主要考查了实数的大小比较,解题关键是熟练掌握实数在数轴上从左到右是越来越大.3.(3分)下列运算正确的是()A.(﹣m3)2=﹣m5 B.m2n•m=m3n C.3mn﹣m=3n D.(m﹣1)2=m2﹣1【分析】利用幂的乘方法则,单项式乘单项式法则,合并同类项法则,完全平方公式逐项判断即可.【解答】解:(﹣m3)2=m6,则A不符合题意;m2n•m=m3n,则B符合题意;3mn与m不是同类项,无法合并,则C不符合题意;(m﹣1)2=m2﹣2m+1,则D不符合题意;故选:B.【点评】本题考查幂的乘方,单项式乘单项式,合并同类项,完全平方公式,熟练掌握相关运算法则是解题的关键.4.(3分)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A. B. C. D.【分析】直接由概率公式求解即可.【解答】解:从二十四个节气中选一个节气,则抽到的节气在夏季的概率为=,故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.5.(3分)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为()A.40° B.50° C.60° D.70°【分析】由平行线的性质推出∠1=∠3,由反射定律得到∠3=∠4,因此∠4=∠1=50°.【解答】解:∵入射光线是平行光线,∴∠1=∠3,由反射定律得:∠3=∠4,∴∠4=∠1=50°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠1=∠3,由反射定律得到∠3=∠4.6.(3分)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.①② B.①③ C.②③ D.只有①【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.7.(3分)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为()A. B. C. D.【分析】根据“如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵如果每一间客房住7人,那么有7人无房可住,∴7x+7=y;∵如果每一间客房住9人,那么就空出一间房,∴9(x﹣1)=y.∴根据题意可列方程组.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(3分)如图,为了测量某电子厂的高度,小明用高1.8m的测量仪EF测得顶端A的仰角为45°,小军在小明的前面5m处用高1.5m的测量仪CD测得顶端A的仰角为53°,则电子厂AB的高度为()(参考数据:,,A.22.7m B.22.4m C.21.2m D.23.0m【分析】根据题意可得:EF=BM=1.8m,CD=BN=1.5m,DF=5m,EM=BF,BD=CN,EM⊥AB,CN⊥AB,然后设BD=CN=xm,则EM=BF=(x+5)m,分别在Rt△AEM和Rt△ACN中,利用锐角三角函数的定义求出AM和AN的长,从而列出关于x的方程,进行计算即可解答.【解答】解:由题意得:EF=BM=1.8m,CD=BN=1.5m,DF=5m,EM=BF,BD=CN,EM⊥AB,CN⊥AB,设BD=CN=xm,∴EM=BF=DF+BD=(x+5)m,在Rt△AEM中,∠AEM=45°,∴AM=EM•tan45°=(x+5)m,在Rt△ACN中,∠ACN=53°,∴AN=CN•tan53°≈x(m),∵AM+BM=AN+BN=AB,∴x+5+1.8=x+1.5,解得:x=15.9,∴AN=x=21.2(m),∴AB=AN+BN=21.2+1.5=22.7(m),∴电子厂AB的高度约为22.7m,故选:A.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)9.(3分)一元二次方程x2﹣3x+a=0的一个解为x=1,则a=2.【分析】将x=1代入一元二次方程,求出a的值即可.【解答】解:由题知,将x=1代入一元二次方程得,1﹣3+a=0,解得a=2.故答案为:2.【点评】本题主要考查了一元二次方程的解,熟知一元二次方程解得定义是解题的关键.10.(3分)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是2(答案不唯一).(写出一个答案即可)【分析】根据正方形的面积公式得到AD=,GJ=1,得到1<DG<,于是得到结论.【解答】解:∵S正方形ABCD=10,S正方形GHIJ=1,∴AD=,GJ=1,∴1<DG<,∴正方形DEFG的边长可以是2,故答案为:2(答案不唯一).【点评】本题考查了相似图形,正方形的性质,正确地识别图形是解题的关键.11.(3分)如图,在矩形ABCD中,,O为BC中点,OE=AB=4,则扇形EOF的面积为4π.【分析】根据已知条件求出BC,从而求出OB,根据三角形函数求出∠BOE,同理求出∠COF,进而求出∠EOF,再利用扇形的面积公式求出扇形EOF的面积即可.【解答】解:∵OE=AB=4,∴BC=AB=4,∵O为BC中点,∴OB=OC=BC=2,∵四边形ABCD为矩形,∴∠OBE=90°,∴cos∠BOE==,∴∠BOE=45°,同理,∠COF=45°,∴∠EOF=180°﹣∠BOE﹣∠COF=90°,∴S扇形EOF=×π•OE2=4π.故答案为:4π.【点评】本题考查扇形面积的计算等,掌握矩形的性质、三角函数和扇形的面积公式是解题的关键.12.(3分)如图,在平面直角坐标系中,四边形AOCB为菱形,,且点A落在反比例函数上,点B落在反比例函数上,则k=8.【分析】过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由可设AD=4x,则OD=3x,根据点A落在反比例函数上得出x的值,再由勾股定理求出OA的长,根据菱形的性质可得出B点坐标,进而得出结论.【解答】解:如图,过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵,∴设AD=4x,则OD=3x,∵点A落在反比例函数上,∴4x•3x=3,解得x=±(负值舍去),∴3x=,4x=2,∴A(,2),∴OA===,∵四边形AOCB为菱形,∴AB=OA,∴B(+,2),即(4,2),∵点B落在反比例函数上,∴k=4×2=8,故答案为:8.【点评】本题考查的是反比例函数图象上点的坐标特征,菱形的性质及解直角三角形,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.13.(3分)如图,在△ABC中,AB=BC,.D为BC上一点,且满足,过D作DE⊥AD交AC延长线于点E,则=.【分析】根据问题分析:要求的值,可能需要构造相似或者平行线分线段成比例,所以作CM⊥AD于点M,从而将转化成,再根据题中条件去求解即可.【解答】解:方法一:如图,过点A作AH⊥CB于点H,作CM⊥AD于点M,∵AB=BC,,设BD=8a,则CD=5a,∴BC=AB=BD+CD=13a,∵tanB=,∴AH=5a,BH=12a,∴DH=BH﹣BD=4a,CH=a,在Rt△ACH中,AC==a,在Rt△ADH中,AD==a,∴cos∠ADC==,∴DM=CD•cos∠ADC=a,∴AM=AD﹣DM=a,∴.故答案为:.方法二:如图过A作AH⊥BC于点H,DM⊥AE于点M,同方法一∵AB=BC,,设BD=8a,则CD=5a,∴BC=AB=BD+CD=13a,∵tanB=,∴AH=5a,BH=12a,∴DH=BH﹣BD=4a,CH=a,在Rt△ACH中,AC==a,在Rt△ADH中,AD==a,∵S△ADC=AH•CD=AC•DM∴DM=a,AM==a,有射影定理可知:AD2=AM•ME,∴AE=a,CE=AE﹣AC=a,∴.故答案为:.方法三:如图所示建立直角坐标系,由前述方法可得OA=5,0D=4,BD=8,OC=1,∴A(0,5),C(1,0),D(﹣4,0),∴AC解析式:y=﹣5x+5,AD解析式为:y=x+5,∵AD⊥DE,∴DE解析式为:y=﹣x﹣,联立AE和DE解析式得:E(,﹣)∴==.故答案为:.【点评】本题主要考查了解直角三角形、平行线分线段成比例等知识点,作为填空压轴题有一定难度,其中熟练掌握相关知识和构造合适的辅助线是解题关键.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.(5分)计算:.【分析】首先计算零指数幂、负整数指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=﹣2×+1+﹣1+4=﹣+1+﹣1+4=4.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.15.(7分)先化简,再代入求值:,其中.【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子进行计算,即可解答.【解答】解:=•=•=,当时,原式===.【点评】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.16.(8分)据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50学校B:(1)学校平均数众数中位数方差A43.34883.299B48.42547.5354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【分析】(1)分别根据平均数、众数和中位数的定义解答即可;(2)根据平均数和方差的意义解答即可.【解答】解:(1)A学校的平均数为:(28+30+40+45+48+48+48+48+48+50)=43.3,B学校的众数为25,中位数为=47.5,故答案为:43.3,25,47.5;(2)小明爸爸应该预约A学校,理由如下:因为两所学校的平均数接近,但A学校的方差小于B学校,即A学校预约人数比较稳定,所以小明爸爸应该预约A学校.【点评】本题考查折线统计图、中位数、众数和方差,解答本题的关键是明确题意,利用数形结合的思想解答.17.(8分)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,如图为购物车叠放在一起的示意图,若一辆购物车车身长1m,每增加一辆购物车,车身增加0.2m.问题解决任务1若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?【分析】任务1:根据“一辆购物车车身长1m,每增加一辆购物车,车身增加0.2m”列出函数关系式;任务2:把L=2.6代入解析式求出n的值即可;任务3:设用扶手电梯运输m次,直立电梯运输n次,根据题意得,求出m的取值范围即可.【解答】解:任务1:根据题意得:L=0.2(n﹣1)+1=0.2n+0.8,∴车身总长L与购物车辆数n的表达式为L=0.2n+0.8;任务2:当L=2.6时,0.2n+0.8=2.6,解得n=9,2×8=18(辆),答:直立电梯一次性最多可以运输18辆购物车;任务3:设用扶手电梯运输m次,直立电梯运输n次,∵100÷24=4,根据题意得:,解得m≥,∵m为正整数,且m≤5,∴m=2,3,4,5,∴共有4种运输方案.【点评】本题考查一次函数的应用和一元一次不等式的应用,关键是列出函数解析式和不等式.18.(9分)如图,在△ABD中,AB=BD,⊙O为△ABD的外接圆,BE为⊙O的切线,AC为⊙O的直径,连接DC并延长交BE于点E.(1)求证:DE⊥BE;(2)若AB=5,BE=5,求⊙O的半径.【分析】(1)连接BO并延长交AD于H点,如图,先证明BO垂直平分AD得到∠BHD=90°,再根据切线的性质得到∠OBE=90°,根据圆周角定理得到∠ADC=90°,于是可判断四边形BEDH为矩形,所以∠E=90°,从而得到结论;(2)先利用BO垂直平分AD得到AH=DH,再利用四边形BEDH为矩形得到DH=BE=5,接着在Rt△BDH中利用勾股定理计算出BH=5,设⊙O的半径为r,则OH=5﹣r,OD=r,所以(5﹣r)2+52=r2,然后解方程即可.【解答】(1)证明:连接BO并延长交AD于H点,如图,∵AB=BD,OA=OD,∴BO垂直平分AD,∴∠BHD=90°,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°∵AC为⊙O的直径,∴∠ADC=90°,∴四边形BEDH为矩形,∴∠E=90°,∴BE⊥DE;(2)解:∵BO垂直平分AD,∴AH=DH=AD=3,∵四边形BEDH为矩形,∴DH=BE=5,在Rt△BDH中,∵BD=AB=5,DH=5,∴BH==5,设⊙O的半径为r,则OH=5﹣r,OD=r,在Rt△ODH中,(5﹣r)2+52=r2,解得r=3,即⊙O的半径为3.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;灵活运用相似三角形的性质计算相应线段的长或表示线段之间的关系是解决问题的关键.也考查了圆周角定理、切线的性质.19.(12分)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2Unit2Imaboy2023-2024学年一年级英语
- 学习通《创新创业基础》章节测试答案
- 2025-2030年中国珠海房地产行业市场行情监测及未来趋势研判报告
- 企业邮箱申请书
- 困难户建房申请书
- 新版人教PEP版三年级下册英语课件 Unit 3 Part B 第2课时
- 新疆农业大学《农村社会学》2023-2024学年第二学期期末试卷
- 生态农业中的文化元素创新应用
- 郑州汽车工程职业学院《数字动画设计》2023-2024学年第二学期期末试卷
- 农业保险理赔委托服务协议范本(第三方评估)
- 甲流乙流培训课件
- 《视网膜静脉阻塞》课件
- 2025《省建设工程档案移交合同书(责任书)》
- 春季安全教育培训课件
- 《大学英语1》期末考试试卷及答案(专科)
- 《石油钻井基本知识》课件
- 《ZN真空断路器》课件
- 2024新沪教版英语(五四学制)七年级上单词默写单
- 电力两票培训
- TCCEAS001-2022建设项目工程总承包计价规范
- 2024.8.1十七个岗位安全操作规程手册(值得借鉴)
评论
0/150
提交评论