版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州市星海中学高三最后一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若满足约束条件则的最大值为()A.10 B.8 C.5 D.32.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.3.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是().A. B. C. D.4.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.85.已知,,,,则()A. B. C. D.6.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q7.已知实数,满足,则的最大值等于()A.2 B. C.4 D.88.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A. B. C. D.9.已知倾斜角为的直线与直线垂直,则()A. B. C. D.10.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.711.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β12.设函数的定义域为,命题:,的否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.14.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.15.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.16.已知实数,满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.18.(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.19.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.20.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.22.(10分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.2、A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.3、A【解析】
基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,,,,共4个,其和等于的概率.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.4、B【解析】
根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.5、D【解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.6、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。7、D【解析】
画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.8、C【解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.9、D【解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.10、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.11、B【解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.12、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.08【解析】
先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,.故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.14、【解析】
取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,,即,即,,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15、.【解析】
根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.16、【解析】
作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【解析】
连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.18、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】
(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,,则,,写出三角形面积,求其平方导数的最值,则答案可求.【详解】解:(1)由题意,为等腰直角三角形,又,,恰好是该零件的盖,,则,由图甲知,,,则在图乙中,,,,又,平面,平面,;(2)由题意知,在等腰三角形中,,则,,.令,,,.可得:当时,,当,时,,当时,有最大值.由(1)知,平面,该三棱锥容积的最大值为,且.当时,取得最大值,无盖三棱锥容器的容积最大.答:当值为时,无盖三棱锥容器的容积最大.【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题.19、(1)见解析;(2)【解析】
(1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望.(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程.【详解】(1)由数据可知,,,,,五个年份考核优秀.由题意的所有可能取值为,,,,,,,.故的分布列为:所以.(2)因为,所以去掉年的数据后不影响的值,所以.又去掉年的数据之后,所以,从而回归方程为:.【点睛】求线性回归方程时要涉及到大量的计算,所以在解题时要注意运算的合理性和正确性,对于题目中给出的中间数据要合理利用.本题考查概率和统计的结合,这也是高考中常出现的题型,属于基础题.20、(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】
(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,,因为构成以2为公比的等比数列,所以,解得,所以,.故,,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单离婚协议书范文
- 简易工厂转让合同范本
- 淋浴房工程变更与索赔合同
- 国有企业增资协议书范本
- 借车合同范本
- 2024年度网络安全防护系统设计与施工总承包合同
- 基于2024年度的物流服务合同
- 树木买卖合同纠纷树木买卖合同
- 体育中心场地出租合同
- 男方自愿净身出户离婚协议书完整版
- 部编人教版2022-2023学年度第一学期四年级道德与法治上册期末测试卷及答案
- 统编版(2024)语文七年级上册 第10课 往事依依 公开课一等奖创新教案
- 全国巾帼家政服务职业技能大赛(母婴护理员)理论考试题库(含答案)
- 员工食堂消防应急预案
- 离婚协议书常用范本2024年
- 2024年各地中考语文卷【综合性学习题】汇集练附答案解析
- 个人情况说明怎么写
- 第20课 三国两晋南北朝时期的科技与文化-2024-2025学年初中历史七年级上册上课课件
- 名著导读 《昆虫记》教学设计2024-2025学年统编版语文八年级上册
- 数学-广东省2025届广州市高三年级上学期阶段性训练暨8月摸底考试试题和答案
- 2024年人民日报社招聘应届高校毕业生85人笔试(高频重点复习提升训练)共500题附带答案详解
评论
0/150
提交评论