




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州市常熟市高考仿真卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,存在实数,使得,则的最大值为()A. B. C. D.2.若满足约束条件则的最大值为()A.10 B.8 C.5 D.33.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.4.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17645.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.76.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.907.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.8.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.9.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.10.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种A. B. C. D.11.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.12.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则__________.14.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.15.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.16.如图,的外接圆半径为,为边上一点,且,,则的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.(1)求曲线的标准方程;(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.18.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.19.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.20.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.21.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.22.(10分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.2、D【解析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.3、B【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.4、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.5、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.6、A【解析】
利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.7、D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.8、C【解析】
先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.9、A【解析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.10、C【解析】
在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两组的人数分别为、或、,
又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.11、A【解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.12、D【解析】
如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:因,故,所以,,应填.考点:三角变换及运用.14、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.15、【解析】,可行域如图,直线与圆相切时取最大值,由16、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.【点睛】本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)设,则点到轴的距离为,因为圆被轴截得的弦长为,所以,又,所以,化简可得,所以曲线的标准方程为.(2)设,,因为直线的斜率,所以可设直线的方程为,由及,消去可得,所以,,所以.设线段的中点为,点的纵坐标为,则,,所以直线的斜率为,所以,所以,所以.易得圆心到直线的距离,由圆经过点,可得,所以,整理可得,解得或,所以或,又,所以.18、(1)分布列见解析,;(2)0.8575【解析】
(1)根据题目所给数据求得分布列,并计算出数学期望.(2)根据对立事件概率计算公式、相互独立事件概率计算公式,计算出刘师傅讲座及加工个零件作示范的总时间不超过分钟的概率.【详解】(1)的分布列如下:202530350.150.300.400.15.(2)设,分别表示讲座前、讲座后加工该零件所需时间,事件表示“留师傅讲座及加工两个零件示范的总时间不超过100分钟”,则.【点睛】本小题主要考查随机变量分布列和数学期望的求法,考查对立事件概率计算,考查相互独立事件概率计算,属于中档题.19、(1);(2).【解析】
(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.20、(1);(2)证明见解析【解析】
(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.21、(1);(2).【解析】试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 端钩菱纹叶蝉偏好取食枣疯病发病枣树的生理机制
- 2025悦榕庄别墅区清洁服务外包合同
- 实践报告周总结
- 九年级上学期数学教学计划(6篇)
- 2025年药学专业考试题及答案解读
- 2025年消费者行为与市场分析能力考试试卷及答案
- 函数的极值与最值课件
- 2025年人际关系协调师职业资格考试试题及答案
- 2025年桥梁工程师执业考试试题及答案
- 2025年新公司工作计划范文(16篇)
- 夜宿山寺-优质课件
- 《低段培智学生行为习惯养成教育的研究》小课题研究中期报告
- TC4钛合金拉拔工艺探索
- 八年级数学上册《平方差公式》的教学反思(优秀3篇)
- 填石路堤沉降差检测记录表
- “乡村振兴”战略应知应会试题及答案(分享)
- 衢州万达暖通工程施工方案(最终版)
- 学校端午假期致学生家长一封信
- 遗传自制习题答案个我
- 链轮齿数尺寸对照表三
- 植物生理学第九章光形态建成.ppt
评论
0/150
提交评论