版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届西藏拉萨北京实验中学高三下学期联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.2.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.3.已知复数,若,则的值为()A.1 B. C. D.4.若函数有且仅有一个零点,则实数的值为()A. B. C. D.5.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.6.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.7.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.8.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.9.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.10.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路11.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.12.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数,若函数的最大值为,则实数的最大值为______.14.数列的前项和为,数列的前项和为,满足,,且.若任意,成立,则实数的取值范围为__________.15.在中,,,则_________.16.若满足约束条件,则的最小值是_________,最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.18.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.20.(12分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.21.(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.22.(10分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.2、D【解析】
根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.3、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.4、D【解析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,,,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,,即,解得或.①当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.5、C【解析】
令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.6、C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.7、C【解析】
根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.8、A【解析】
建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.9、D【解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.10、D【解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.11、D【解析】
如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.12、D【解析】
选取为基底,其他向量都用基底表示后进行运算.【详解】由题意是的重心,,∴,,∴,故选:D.【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,,即.当时,显然成立;当时,由等价于,令,,当时,,单调递增,当时,,单调递减,,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.14、【解析】
当时,,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解.【详解】解:当时,,则,,当时,,,,,,(当且仅当时等号成立),,故答案为:.【点睛】本题主要考查已知求,累乘法,主要考查计算能力,属于中档题.15、【解析】
先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.16、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)由面积最大值可得,又,以及,解得,即可得到椭圆的方程,(2)假设轴上存在点,是以为直角顶点的等腰直角三角形,设,,线段的中点为,根据韦达定理求出点的坐标,再根据,,即可求出的值,可得点的坐标.【详解】(1)面积的最大值为,则:又,,解得:,椭圆的方程为:(2)假设轴上存在点,是以为直角顶点的等腰直角三角形设,,线段的中点为由,消去可得:,解得:∴,,依题意有,由可得:,可得:由可得:,代入上式化简可得:则:,解得:当时,点满足题意;当时,点满足题意故轴上存在点,使得是以为直角顶点的等腰直角三角形【点睛】本题考查了椭圆的方程,直线和椭圆的位置关系,斜率公式,考查了运算能力和转化能力,属于中档题.18、(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】
(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,,因为构成以2为公比的等比数列,所以,解得,所以,.故,,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,,,,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题.19、(1)(2)证明见解析【解析】
(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,.(2)设数列的前n项和为,则两式相减得,所以,设则,所以.20、(1)见解析;(2)【解析】
(1)取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2)以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即可.【详解】(1)证明:如图,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电动食品处理机市场发展预测和趋势分析
- 2024年度仓储物流合作合同
- 2024年度北京市房产项目融资合同
- 2024年度北京二手汽车租赁合同
- 2024年度南京市固体废弃物处理合同
- 2024年度技术服务合同详细范本
- 2024年度无人机遥感服务合同
- 2024年度城市更新项目合同
- 2024年度企业数字化转型合同
- 2024年度园林绿化劳务分包合同
- GB/T 18801-2008空气净化器
- 计算机应用技术专业调研方案
- 华中科技大学《应用光学》课程PPT-应用光学复习PPTB
- 周围神经损伤课件
- 展览馆陈列展柜制作施工方案及施工工艺方法
- 鱼类洄游(总)详细版课件
- 学会换位思考-共建和谐人际关系课件
- 2020年华医网继续教育学习 坚定职业信仰,改善医疗服务试题及答案
- YB∕T 5308-2011 粉末冶金用还原铁粉
- 小学数学专题讲座:小学数学计算能力的培养知识讲稿课件
- 西格斯雾化器操作维护课件
评论
0/150
提交评论