江西省宜春市袁州区宜阳新区四校2024-2025学年九年级上学期11月期中考试数学试题(无答案)_第1页
江西省宜春市袁州区宜阳新区四校2024-2025学年九年级上学期11月期中考试数学试题(无答案)_第2页
江西省宜春市袁州区宜阳新区四校2024-2025学年九年级上学期11月期中考试数学试题(无答案)_第3页
江西省宜春市袁州区宜阳新区四校2024-2025学年九年级上学期11月期中考试数学试题(无答案)_第4页
江西省宜春市袁州区宜阳新区四校2024-2025学年九年级上学期11月期中考试数学试题(无答案)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024—2025学年第一学期九年级期中阶段性检测数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是()A. B. C. D.2.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.3.如图,是的直径,弦,下列结论不一定成立的是()A. B. C. D.4.在平面直角坐标系中,把抛物线向右平移4个单位长度,在向下平移3个单位长度得到的抛物线的函数解析式为()A. B. C. D.5.如图,线段是半圆O的直径,分别以点A和点O为圆心,大于的长为半径作弧,两弧交于两点,作直线,交半圆O于点C,交于点E,连接,若,则的长是()A. B.4 C.6 D.6.如图,把正方形铁片置于平面直角坐标系中,顶点A的坐标,点在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P的坐标为()A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.己知点与点关于原点对称,则_______.8.若关于x的一元二次方程的一个根为,则k的值为_______.9.已知是的弦,且,则的半径是_______.10.已知抛物线过三点,则的大小关系是_______.(用“<”号连接)11.如图①是我国著名建筑“东方之门”,它通过简单的几何曲纹处理,将传统文化与现代建筑为一体,最大程度地传承了中国的历史文化.“门”的内侧曲纹呈抛物线形,如图②,已知其底部宽度为80米,高度为200米,则离地面128米处的水平宽度(即的长)为_______米.图1图212.在中,是的中点,点P在的边上,若为等腰三角形,则的长为_______.三、解答题(本大题共5小题,每题6分,共30分)13.(1)解一元二次方程(2)如图,在中,半径,且,求的长.14.次函数的图像过点.(1)求该二次函数解析式;(2)关于x的不等式的解集为_______15.如图,在中,,在同一平面内,将绕点A旋转到的位置,使得,求的度数.16.请用无刻度直尺按下列要求作图.图1图2如图,已知是的直径,四边形是平行四边形.①如图1,当点D在圆上时,作的角平分线;②如图2,当点D不在圆上时,作的角平分线.17.(课本改编)如图,己知所在的直线垂直平分线段,小明想用图1这样的“T”形工具找到圆形工件的圆心并求出工件的半径,请你帮小明求出圆的半径r.图1图2四、解答题(本大题共3小题,每小题8分,共24分)18.芯片目前是全球紧缺资源,某市政府通过招商引进“芯屏汽合、集终生智”等优势产业,发展新兴产业.某芯片公司引进了1条内存芯片生产线,开工第一季度生产200万个,第二季度生产288万个.(1)已知第二、三季度生产量的平均增长率相同,求第二、三季度生产量的平均增长率;(2)经调查发现,1条生产线的最大产能是600万个/季度,若每增加1条生产线,每条生产线的最大产能将减少20万个/季度.该公司要保证每季度生产内存芯片2600万个,在增加产能同时又要节省投入成本的条件下(生产线越多,投入成本越大),应该再增加几条生产线?19.发石车是古代远程攻击的武器(如图1),有一个发石车,发射出去的石块的运动轨迹是抛物线的一部分,距离发射点20米时达到最大高度10米,将发石车置于山坡底部O处,山坡上有一点A,点A与点O的水平距离为30米,竖直距离为3米,是高度为3米的防御墙,以O为原点,建立如图②所示的平面直角坐标系.图1图2(1)求石块的运动轨迹所在抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.20.如图,在中,,点分别在上,线段绕点D顺时针旋转得到,其中旋转角,此时点F恰好落在上,过点的圆交于点G,连接.(1)若,求的度数;(2)求证:;五、解答题(本大题共2小题,每小题9分,共18分)21.阅读材料:已知方程,且,求的值.解:由,及可知,又,可变形为.根据和的特征.是方程的两个不相等的实数根.则,即.根据阅读材料所提供的方法,完成下面的解答.已知:且,求下列各式的值:(1) (2)22.如图,抛物线与x轴交于两点,与y轴交于点C,抛物线的对称轴交x轴于点D,己已知.(1)求抛物线的函数表达式;(2)点E是线段上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形的面积最大?求出四边形的最大面积及此时E点的坐标.六、解答题(本大题共12分)综合与实践:己知,,在和上截取,将线段边绕点A逆时针旋转得到线段,点E在射线上,连接.图1图2图3【特例感知】(1)如图1,若旋转角,则与的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论