版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
智能系统(AComprehensiveFoundation)LectureNoteZhaoJieYuComputerScienceDepartmentNingboUniversityAComprehensiveFoundationReferences:NeuralNetworksandLearningMachines---Acomprehensivefoundation(3rdEdition),SimonHaykin,PrenticeHall,20092.InformationTheory,Inference,andLearningAlgorithms,DavidJ.C.MacKay,CambridgeUniversityPress,20033.智能科学,史忠植,清华大学出版社,20064.WiKi,/Contents:NeuralComputation,LearningMachinesSupportVectorMachinePrincipalComponentsAnalysisRecurrentNetworks,MarkovRandomFieldsEvolutionaryComputationPart1.NeuralComputationWhatisanArtificialNeuralNetwork?ComputationalmodelinspiredfromneurologicalmodelofbrainHumanbraincomputesindifferentwayfromdigitalcomputer(thevonNeumannmachine)highlycomplex,nonlinear,andparallelcomputingmanytimesfasterthand-computerinpatternrecognition,perception,motorcontrolhasgreatstructureandabilitytobuildupitsownrulesbyexperiencedramaticdevelopmentwithin2yearsafterbirthcontinuestodevelopafterwardLanguageLearningDevicebefore13yearsoldPlasticity:abilitytoadapttoitsenvironmentThemostimportant:itisalive!HistoricalNotesDeepLearning…….Markovrandomfields,probabilisticgraphicalmodelsspikingneuralnetworksVapnik(1990)---SupportVectorMachine(SVM)Broomhead&Lowe(1988)----RadialBasisFunctions(RBF)Linsker(1988)-----InformaxprincipleRumelhart,Hinton(1986)--------Back-propagation[Werbos(1974)-----Beyondregression(PhDThesis)]Kohonen(1982)------Self-OrganizingMapsHopfield(1982)------HopfieldNetworksMinsky&Papert(1969)------PerceptronsRosenblatt(1960)------PerceptronMinsky(1954)------NeuralNetworks(PhDThesis)Hebb(1949)--------TheorganizationofbehaviourMcCulloch&Pitts(1943)-----artificialneuralnetworksbornNeuralNetworkDefinitionsMachinedesignedtomodelthewayinwhichbrainperformstasksimplementedbyelectronicdevicesand/orsoftware(simulation)LearningisthemajoremphasisofNNMassivelyparalleldistributedprocessormassiveinterconnectionofsimpleprocessingunitssimpleprocessingunitsstoreexperienceandmakeitavailabletouseknowledgeisacquiredfromenvironmentthrulearningprocessLearningMachinemodifysynapticweightstoobtaindesignobjectivemodifyowntopology-neuronsdieandnewonecangrowConnectionistnetwork-connectionismBenefitsofNeuralNetworks(I)Powercomesfrommassivelyparalleldistributedstructureandlearntogeneralizegeneralization:abilitytoproducereasonableoutputforinputsnotencounteredduringtrainingNNcannotprovidesolutionbyworkingindividuallyComplexproblemisdecomposedintosimpletasks,andeachtaskisassignedtoaNNLongwaytogotobuildacomputerthatmimichumanbrain1.Non-linearityinterconnectionofnon-linearneuronsisitselfnon-lineardesirablepropertyifunderlyingphysicalmechanismisnon-linearBenefitsofNeuralNetworks(II)2.Input-OutputMappinginput-outputmappingisbuiltbylearningfromexamplesreducedifferencesofdesiredresponseandactualresponsenon-parametricstatisticalinferenceestimatearbitrarydecisionboundariesininputsignalspace3.AdaptivityadaptsynapticweighttochangesofenvironmentNNisretrainedtodealwithminorchangeintheoperatingenvironmentchangesynapticweightsinreal-timemorerobust,reliablebehaviorinnon-stationaryenvironmentAdaptivepatternrecognition,Adaptivesignalprocessing,Adaptivecontrolstability-plasticitydilemmaBenefitsofNeuralNetworks(III)4.EvidentialResponsenotonlyselectedclasslabelbutalsoconfidenceconfidencescanbeusedtorejectrecognitionaccuracyvs.reliability(doonlyyoucando)5.ContextualInformationprocessing(contextual)knowledgeispresentedinthestructureeveryneuronisaffectedbyothers6.FaultToleranceperformancedegradesgracefullyunderadverseconditioncatastrophicfailureofd-computer7.VLSIimplementabilitymassivelyparallelnaturemakesitwellsuitedforVLSIimplementationBenefitsofNeuralNetworks(IV)8.UniformityofAnalysisandDesignNeuroniscommontoallNNsharetheoriesandlearningalgorithmsmodularnetworkscanbebuiltthruseamlessintegration9.NeurobiologicalAnalogylivingproofoffaulttolerant,fast,powerfulprocessingNeuroscientistsseeitasaresearchtoolforneurobiologicalphenomenaEngineerslooktoneurosciencefornewideasHumanBrainHumannervoussystem1011neuronsinhumancortex60x1012synapticconnections104synapsesperneuron10-3seccycletime(computer:10-9sec)energeticefficiency:10-16joulesoperationpersecond(computer:10-6joules)ReceptorsNeuralNetEffectorsstimulusresponse核磁共振成像HumanBrainNeuronstructurenucleus,cellbody,axon,dendrite,synapsesNeurotransmissionNeuron’soutputisencodedasaseriesofvoltagepulsescalledactionpotentialsorspikesbymeansofelectricalimpulseeffectedbychemicaltransmitterPeriodoflatentsummationgenerateimpulseiftotalpotentialofmembranereachesalevel:firingexcitatoryorinhibitoryCerebralcortexAreasofBrainforspecificfunctionBiologicalNeuronExcerptedfromArtificialIntelligence:ModernApproach
byS.RusselandP.NorvigNeurotransmission/pubs/qdocs/mom/TG/intro.htmOrganizationofLevelsinBrainsmapintocerebralcortexpathways,columns,topographicmaps;involvemultipleregionsneuronsofsimilaranddifferentproperties,1mminsize,localizedregioninthebrain100minsize,containsseveraldendritetreesAssemblyofsynapses(siliconchip),milisecond,mmostfundamentallevel(transistor)MoleculesSynapsesNeuralmicrocircuitsDendritetreeNeuronsLocalcircuitsInterregionalcircuitsCentralNervoussysCerebral
CortexModelsofNeuronNeuronisinformationprocessingunitAsetofsynapsesorconnectinglinkscharacterizedbyweightorstrengthAnaddersummingtheinputsignalsweightedbysynapsesalinearcombinerAnactivationfunctionalsocalledsquashingfunctionsquash(limits)theoutputtosomefinitevaluesNonlinearmodelofaneuron(I)wk1x1wk2x2wkmxm......
Biasbk
(.)vkInputsignalSynapticweightsSummingjunctionActivationfunctionOutputykNonlinearmodelofaneuron(II)wk1x1wk2x2wkmxm......
(.)vkInputsignalSynapticweightsSummingjunctionActivationfunctionOutputykwk0X0=+1Wk0=bk(bias)TypesofActivationFunctioniniOj+1iniOj+1t阈值函数Piecewise-linearFunctionSigmoidFunction(differentiable)iniOj+1taisslopeparameterActivationFunctionvaluerangevi+1-1SignumFunctionvi+1HyperbolictangentFunctionStochasticModelofaNeuronDeterministicvsstochasticstochastic:stayatastatewithprobabilityx:stateofneuronv:inducedlocalfieldP(v)probabilityoffiringwhereTispseudotemparatureT0,reducedtodeterministicformNeuralnetworkasdirectedGraphBlockdiagramcanbesimplifybytheideaofsignalflowgraphnodeisassociatedwithsignaldirectedlinkisassociatedwithtransferfunctionsynapticlinksgovernedbylinearinput-outputrelationsignalxjismultipliedbysynapticweightwkjactivationlinksgovernedbynonlinearinput-outputrelationnonlinearactivationfunctionSignalFlowGraphofaNeuronx1x2xm...vkykx0=+1
(.)Wk0=bkwk1wk2wkmArchitecturalgraphofaNeuronPartiallycompletedirectedgraphdescribinglayoutComputationnode:shadedsourcenode:smallsquareThreegraphicalrepresentationsBlockdiagram-providingfunctionaldescriptionofaNNSignalflowgraph-completedescriptionofsignalflowarchitecturalgraph-networklayoutFeedback输出部分决定自己的输出通过反馈dependingonw稳定,线性发散,发散指数weareinterestedinthecaseof|w|<1;infinitememoryoutputdependsoninputsofinfinitepastNNwithfeedbackloop:recurrentnetworkxj(n)xj’(n)wyk(n)z-1NetworkArchitectureSingle-layerFeedforwardNetworksinputlayerandoutputlayersingle(computation)layerfeedforward,acyclicMultilayerFeedforwardNetworkshiddenlayers-hiddenneuronsandhiddenunitsenablestoextracthighorderstatistics10-4-2network,100-30-10-3networkfullyconnectedlayerednetworkRecurrentNetworksatleastonefeedbackloopwithorwithouthiddenneuronNetworkArchitectureSinglelayerMultiplelayerfullyconnectedRecurrentnetworkwithouthiddenunitsinputsoutputsRecurrentnetworkwithhiddenunitsUnitdelayoperatorKnowledgeRepresentationKnowledgereferstostoredinformationormodelsusedbyapersonormachinetointerpret,predictandappropriatelyrespondtotheoutsideworldWhatinformationisactuallymadeexplicit;HowtheinformationisphysicallyencodedforthesubsequentuseGoodsolutiondependsongoodrepresentationofknowledgeInNN,knowledgeisrepresentedbyinternalnetworkparametersrealchallengeKnowledgeoftheworldworldstaterepresentedbyknownfacts-priorknowledgeobservations-obtainedby(noisy)sensors;trainingexamplesKnowledgeAcquisitionbyNNTrainingTrainingexamples:eitherlabeledorunlabeledlabeled:inputsignalanddesiredresponseunlabeled:differentrealizationsofinputsignalExamplesrepresenttheknowledgeofenvironmentHandwrittendigitrecognition1.AppropriatearchitectureisselectedforNNsourcenode=numberofpixelsofinputimage10outputnodeforeachdigitsubsetofexamplesfortrainingNNbysuitablelearningalgorithm2.RecognitionperformanceistestedbytherestoftheexamplesPositiveandnegativeexamplesRulesofKnwldgrepresentationinNN1.SimilarinputfromsimilarclassesproducesimilarrepresentationssimilaritymeasuresEuclidiandistance,dot(inner)product,cosrandomvariable:Mahalanobisdistance...2.Separateclassesproducewidelydifferentrepresentations3.Moreneuronsshouldbeinvolvedinrepresentationofmoreimportantfeatureprobabilityofdetection/falsealarm4.PriorinformationandinvariancesshouldbebuiltintothedesignofthenetworkgeneralpurposevsspecializedBuildingPriortoNNdesignSpecializedstructurelearnsfastbecauseofsmallfreeparametersrunsfastbecauseofsimplestructureNowell-definedrulesforbuildingspecializedNNadhocapproeachrestrictingthenetworkarchitecturethruuseoflocalconnectionreceptivefieldConstrainingthechoiceofsynapticweightsweightsharing,parametertyingx1x5x6x7x8x9x10x3x4x2y1y2Combiningreceptivefieldandweight-sharing(convolutionnetwork)BuildinginvariancetoNNdesignWanttobecapabletocopewithtransformationsInvariancebystructuresynapticconnectionsarearrangednottoaffectedbythetransformrotationinvariantforcingwji
=wjkforallkinthesamedistancefromthecenterofimageInvariancebytrainingtrainbydataofmanydifferenttransformationscomputationallyinfeasibleinvariantfeaturespaceusefeaturesinvarianttothetransformationsNowell-developedtheoryofoptimizingarchitectureofNNNNlacksexplanationcapabilityAIandNNDefinitionofAI;GoalofAIartofcreatingmachinethatperformstasksthatrequiresintelligencewhenperformedbypeoplestudyofmentalfacultiesthroughtheuseofcomputat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南昌影视传播职业学院招聘备考题库及答案详解1套
- 洛阳市采购内控制度
- 光大银行内控制度
- 自助内控制度
- 企业科技项目内控制度
- 蛋鸡养殖内控制度
- 站长私募内控制度汇编
- 福建财政内控制度
- 浙江政府采购内控制度
- 汽车维修队内控制度
- 2026-2031中国酿酒设备行业市场现状调查及投资前景研判报告
- ICU患者睡眠质量持续改进方案
- 单侧双通道脊柱内镜技术
- KET考试必背核心短语(按场景分类)
- 2025四川产业振兴基金投资集团有限公司应届毕业生招聘9人笔试历年难易错考点试卷带答案解析2套试卷
- GB/T 14748-2025儿童呵护用品安全儿童推车
- 精防医生考试试题及答案
- 2025年中国碳氢清洗剂市场调查研究报告
- 天然气制氢项目可行性研究报告
- DB11T 1493-2025 城镇道路雨水口技术规范
- 2023年马原期末复习知识点总结超详细版
评论
0/150
提交评论