天津市英华中学2025届高三第二次联考数学试卷含解析_第1页
天津市英华中学2025届高三第二次联考数学试卷含解析_第2页
天津市英华中学2025届高三第二次联考数学试卷含解析_第3页
天津市英华中学2025届高三第二次联考数学试卷含解析_第4页
天津市英华中学2025届高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市英华中学2025届高三第二次联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.2.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-25.要得到函数的导函数的图像,只需将的图像()A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍6.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.1207.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为()A.1 B.2 C.4 D.88.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.9.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直10.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称11.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.12.己知,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是公差不为0的等差数列的前项和,且,则______.14.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.①2至3月份的收入的变化率与11至12月份的收入的变化率相同;②支出最高值与支出最低值的比是6:1;③第三季度平均收入为50万元;④利润最高的月份是2月份.15.如图所示,平面BCC1B1⊥平面ABC,ABC=120,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.16.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为则该三棱柱的侧面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.18.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.19.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.20.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.2、A【解析】

若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,∴,设,∴,当时,,函数单调递增,当时,,函数单调递减,∴,当时,,当,,函数恒过点,分别画出与的图象,如图所示,,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,∴且,即,且∴,故实数m的最大值为,故选:A【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.3、A【解析】

利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.4、B【解析】

由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.5、D【解析】

先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.6、C【解析】

可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.【点睛】本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.7、C【解析】

设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积.【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,∵直线经过抛物线的焦点,,是与的交点,又轴,∴可设点坐标为,代入,解得,又∵点在准线上,设过点的的垂线与交于点,,∴.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值.本题难度一般.8、D【解析】

通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.9、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系10、B【解析】

根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.11、D【解析】

作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.12、B【解析】

先将三个数通过指数,对数运算变形,再判断.【详解】因为,,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】

先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.14、①②③【解析】

通过图片信息直接观察,计算,找出答案即可.【详解】对于①,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确.对于②,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确.对于③,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确.对于④,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是80﹣60=20万元,错误.故答案为①②③.【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目.15、【解析】

将平移到和相交的位置,解三角形求得线线角的余弦值.【详解】过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.16、【解析】

只要算出直三棱柱的棱长即可,在中,利用即可得到关于x的方程,解方程即可解决.【详解】由已知,,解得,如图所示,设底面等边三角形中心为,直三棱柱的棱长为x,则,,故,即,解得,故三棱柱的侧面积为.故答案为:.【点睛】本题考查特殊柱体的外接球问题,考查学生的空间想象能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)联立直线方程与双曲线方程,消去,得到关于的一元二次方程,根据根的判别式,即可求出结论;(2)设,由(1)可得关系,再由直线l过点,可得,进而建立关于的方程,求解即可.【详解】(1)双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得,,解得且.双曲线C与直线l有两个不同交点时,k的取值范围是.(2)设交点,直线l与y轴交于点,,.,即,整理得,解得或或.又,或时,的面积为.【点睛】本题考查直线与双曲线的位置关系、三角形面积计算,要熟练掌握根与系数关系解决相交弦问题,考查计算求解能力,属于中档题.18、(1)证明见解析;(2)【解析】

(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)取AB的中点O,连接,,在Rt△和Rt△ADB中,AB=2,则=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O⊂平面,所以平面⊥平面DAB(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值为.【点睛】本题考查了面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19、(1),;(2)【解析】

(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.20、(1)见解析(2)【解析】

(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面,与均为正三角形,为的中点∴,,得平面,且由,∴而又为正三角形,得,得.∴,∴三棱锥的体积为.21、(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】

(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.【详解】(1)函数由条件得函数的定义域:,当时,,所以:,时,,当时,,当,时,,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论