版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市静海区独流中学2025届高考冲刺数学模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,且,则()A. B. C. D.2.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.3.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.10954.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.5.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.6.已知是虚数单位,则()A. B. C. D.7.已知向量,且,则等于()A.4 B.3 C.2 D.18.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.9.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.10.若,则“”是“的展开式中项的系数为90”的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件11.下列函数中,在区间上为减函数的是()A. B. C. D.12.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.14.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.15.的展开式中,的系数是__________.(用数字填写答案)16.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.18.(12分)已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令.求数列的前n项和.19.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.20.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.21.(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.22.(10分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.2、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.3、D【解析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.4、D【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.5、C【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).6、B【解析】
根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.7、D【解析】
由已知结合向量垂直的坐标表示即可求解.【详解】因为,且,,则.故选:.【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.9、D【解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D【点睛】本题考查几何概型的面积公式的应用,属于基础题.10、B【解析】
求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.11、C【解析】
利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.12、A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、C【解析】
假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.14、【解析】
设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为,∴当时,.故答案为:.【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.15、【解析】
根据组合的知识,结合组合数的公式,可得结果.【详解】由题可知:项来源可以是:(1)取1个,4个(2)取2个,3个的系数为:故答案为:【点睛】本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.16、【解析】
先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)k1+k2为定值0,见解析【解析】
(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.18、(Ⅰ);(Ⅱ)【解析】试题分析:(1)先由公式求出数列的通项公式;进而列方程组求数列的首项与公差,得数列的通项公式;(2)由(1)可得,再利用“错位相减法”求数列的前项和.试题解析:(1)由题意知当时,,当时,,所以.设数列的公差为,由,即,可解得,所以.(2)由(1)知,又,得,,两式作差,得所以.考点1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前项和.【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前项和,属于难题.“错位相减法”求数列的前项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.19、(1);(2)【解析】
(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.20、(1);(2)【解析】
(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,,当时,,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,∴围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,∴,∴.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标,考查计算能力.21、(1);(2)极小值为,递减区间为:,递增区间为.【解析】
(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气胸的教学查房
- 保洁投标书范本
- 《汽车维修理论》课件
- 《公共关系的职能》课件
- 小学三年级数学两位数乘两位数笔算综合监控模拟题大全附答案
- 想象微电影分库周欣然
- 福建省建瓯市芝华中学2020-2021学年高一下学期第一阶段考试化学试题
- 一季度安全生产工作总结
- 中班社会活动红旗飘飘
- 微量输液泵什么是微量输液泵是电子输液控制装置能将药液精确
- 北师大版数学六年级上册单元真题拔高卷 第6单元《比的认识》(A4 原卷)
- 江西省丰城重点中学2023-2024学年高二上学期第三次月考(12月)数学试题(含答案)
- 上海市房地产买卖合同范本
- 添加剂行业营销策略方案
- 全国优质课一等奖九年级上册道德与法治《共圆中国梦》公开课课件
- 传染病报告ICD编码解说版
- 互联网信息审核员考试题库大全-下(判断、填空题汇总)
- 第5课家族の写真课件-初中日语人教版第一册2
- 印刷品投标方案
- 高频电子线路教学大纲
- 中央空调隐蔽工程验收记录表
评论
0/150
提交评论