版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.5解三角形与其他知识的综合运用(精讲)一.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).二.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).三.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.四.坡度:坡面与水平面所成的二面角的正切值.考法一解三角形在实际生活中的运用【例11】(2023·河北·模拟预测)释迦塔俗称应县木塔,建于公元1056年,是世界上现存最古老最高大之木塔,与意大利比萨斜塔、巴黎埃菲尔铁塔并称“世界三大奇塔”.2016年、释迦塔被吉尼斯世界纪录认定为世界最高的木塔.小张为测量木塔的高度,设计了如下方案:在木塔所在地面上取一点,并垂直竖立一高度为的标杆,从点处测得木塔顶端的仰角为60°,再沿方向前进到达点,并垂直竖立一高度为的标杆,再沿方向前进到达点处,此时恰好发现点,在一条直线上.若小张眼睛到地面的距离,则小张用此法测得的释迦塔的高度约为(参考数据:)(
)A. B. C. D.【例12】(2023·河南郑州·洛宁县第一高级中学校联考模拟预测)如图,某景区为方便游客,计划在两个山头M,N间架设一条索道.为测量M,N间的距离,施工单位测得以下数据:两个山头的海拔高度,在BC同一水平面上选一点A,测得M点的仰角为,N点的人仰角为,以及,
则M,N间的距离为(
)
A. B.120m C. D.200m【一隅三反】1.(2023春·江苏·高三江苏省前黄高级中学校联考阶段练习)如图所示,某学生社团在公园内测量某建筑的高度,为该建筑顶部.在处测得仰角,当沿一固定方向前进60米到达处时测得仰角,再继续前进30米到达处时测得仰角,已知该建筑底部A和、、在同一水平面上,则该建筑高度为(
)
A. B. C.45 D.902.(2023·陕西西安·统考一模)圣·索菲亚教堂坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,被列为第四批全国重点文物保护单位,其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美.如图,小明为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物,高为,在它们之间的地面上的点(三点共线)处测得楼顶,教堂顶的仰角分别是和,在楼顶处测得塔顶的仰角为,则小明估算索菲亚教堂的高度约为(取)(
)A. B. C. D.3.(2023·浙江·高三专题练习)喜来登月亮酒店是浙江省湖州市地标性建筑,某学生为测量其高度,在远处选取了与该建筑物的底端在同一水平面内的两个测量基点与,现测得,,米,在点处测得酒店顶端的仰角,则酒店的高度约是(
)(参考数据:,,)A.91米 B.101米 C.111米 D.121米考法二解三角形与平面向量的综合【例2】(2023·全国·高三专题练习)在中,角A,B,C对应边分别为a,b,c,已知三个向量,,共线,则形状为(
)A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形【一隅三反】1.(2023·上海普陀·曹杨二中校考模拟预测)已知点为的外心,且,则为(
)A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定2.(2022·广东广州·三模)已知的内角,,所对的边分别为,,,向量,,.(1)若,,为边的中点,求中线的长度;(2)若为边上一点,且,,求的最小值.考法三解三角形与三角函数性质综合【例3】(2023春·上海黄浦·高三格致中学校考阶段练习)已知函数.(1)求函数的单调递减区间;(2)在中,内角A,B,C的对边分别为a,b,c,且满足,求的取值范围.【一隅三反】1.(2023·上海·高三专题练习)已知,,(1)求的最小正周期及单调递减区间;(2)已知锐角的内角的对边分别为,且,,求边上的高的最大值.2.(2023·全国·高一专题练习)已知向量,,函数.(1)求函数的零点;(2)若钝角的三内角的对边分别是,,,且,求的取值范围.3.(2023·安徽)已知函数,将的图象横坐标变为原来的,纵坐标不变,再向左平移个单位后得到的图象,且在区间内的最大值为.(1)求的值;(2)在锐角中,若,求的取值范围.考法四解三角形与各种心的综合【例4】(2022·广东·模拟预测)的内角的对边分别为,且.从下列①②③这三个条件中选择一个补充在横线处,并作答.①为的内心;②为的外心;③为的重心.(1)求;(2)若,__________,求的面积.注:如果选择多个条件分别解答,则按第一个解答计分.【一隅三反】1.(2022·湖北省仙桃中学模拟预测)如图,在△ABC中,已知,,,BC边上的中线AM与的角平分线相交于点P.(1)的余弦值.(2)求四边形的面积.2.(2022·广东广州·三模)在①;②这两个条件中任选一个,补充在下面的问题中,并作答.问题:已知中,分别为角所对的边,__________.(1)求角的大小;(2)已知,若边上的两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版跨境电商贸易担保合同4篇
- 二零二五版领养儿童心理干预与康复服务协议4篇
- 二零二五年度鲁珍与李明婚姻解除及子女抚养协议3篇
- 二零二五年度绿色环保门面租赁管理协议4篇
- 2025年度新能源汽车购置及售后服务保障协议合同4篇
- 二零二五年度重型卡车维修合作协议2篇
- 河北省石家庄市2025年度汽车租赁合同
- 二零二五年度养老服务业贷款担保借款合同样本4篇
- 2025年宠物寄养服务合同宠物用品供应协议4篇
- 二零二五年度汽车抵押二手车置换融资协议3篇
- 河北省大学生调研河北社会调查活动项目申请书
- GB/T 20920-2007电子水平仪
- 如何提高教师的课程领导力
- 企业人员组织结构图
- 日本疾病诊断分组(DPC)定额支付方式课件
- 两段焙烧除砷技术简介 - 文字版(1)(2)课件
- 实习证明模板免费下载【8篇】
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- 案件受理登记表模版
- 2022年浙江省嘉兴市中考数学试题(Word版)
- 最新焊接工艺评定表格
评论
0/150
提交评论