版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省六盘水市钟山区六盘水七中2024届高三下学期数学试题3月开学考试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A. B. C. D.12.已知全集,则集合的子集个数为()A. B. C. D.3.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.下列函数中,值域为的偶函数是()A. B. C. D.5.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.6.向量,,且,则()A. B. C. D.7.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.8.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.9.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.10.若执行如图所示的程序框图,则输出的值是()A. B. C. D.411.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21 B.﹣24 C.85 D.﹣8512.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或9二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,x的系数为________.(用数值作答)14.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.16.如图,在中,,,,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82818.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.20.(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.21.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:(1)MN∥平面ABB1A1;(2)AN⊥A1B.22.(10分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.【详解】根据题意,设,则由代入可得即点的轨迹方程为又因为,变形可得,即,且所以由平面向量基本定理可知三点共线,如下图所示:所以的最小值即为到直线的距离最小值根据圆的切线性质可知,当与圆相切时,有最大值设切线的方程为,化简可得由切线性质及点到直线距离公式可得,化简可得即所以切线方程为或所以当变化时,到直线的最大值为即的最大值为故选:B【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用,圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.2、C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题3、A【解析】
求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.4、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.5、B【解析】
设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.6、D【解析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.7、B【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.8、B【解析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.9、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.10、D【解析】
模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.【点睛】本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.11、D【解析】
由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列{an}的公比为q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.12、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-40【解析】
由题意,可先由公式得出二项展开式的通项,再令10-3r=1,得r=3即可得出x项的系数【详解】的二项展开式的通项公式为,r=0,1,2,3,4,5,令,所以的二项展开式中x项的系数为.故答案为:-40.【点睛】本题考查二项式定理的应用,解题关键是灵活掌握二项式展开式通项的公式,属于基础题.14、【解析】
根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.15、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.16、【解析】
由余弦定理求得,再结合正弦定理得,进而得,得,则面积可求【详解】由,得,解得.因为,所以,,所以.又因为,所以.因为,所以.故答案为【点睛】本题考查正弦定理、余弦定理的应用,考查运算求解能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)190(2)见解析(3)可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【解析】
(1)排序后第10和第11两个数的平均数为中位数;(2)由茎叶图可得列联表;(3)由列联表计算可得结论.【详解】解:(1).(2)抗倒伏易倒伏矮茎154高茎1016(3)由于,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【点睛】本题考查茎叶图,考查独立性检验,正确认识茎叶图是解题关键.18、(1);(2)证明见解析【解析】
(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.19、(1),(2)存在,【解析】
(1)先求得曲线的普通方程,利用伸缩变换的知识求得曲线的直角坐标方程,再转化为极坐标方程.根据极坐标和直角坐标转化公式,求得直线的直角坐标方程.(2)求得曲线的圆心和半径,计算出圆心到直线的距离,结合图像判断出存在符合题意,并求得的值.【详解】(1)曲线的普通方程为,纵坐标伸长到原来的2倍,得到曲线的直角坐标方程为,其极坐标方程为,直线的直角坐标方程为.(2)曲线是以为圆心,为半径的圆,圆心到直线的距离.∴由图像可知,存在这样的点,,则,且点到直线的距离,∴,∴.【点睛】本小题主要考查坐标变换,考查直线和圆的位置关系,考查极坐标方程和直角坐标方程相互转化,考查参数方程化为普通方程,考查数形结合的数学思想方法,属于中档题.20、(1)(2)或【解析】
(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程.【详解】解:(1)据题意设椭圆的方程为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.解题时采取设而不求思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题.21、(1)详见解析;(2)详见解析.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工商银行借款合同
- 2024年视力保健用品项目评估分析报告
- 2024至2030年中国大便阀接牙行业投资前景及策略咨询研究报告
- 2024至2030年中国防水式活动法兰热电阻行业投资前景及策略咨询研究报告
- 2024至2030年中国白麻板材数据监测研究报告
- 2024至2030年中国喷砂抛光珠数据监测研究报告
- 近代自然科学(19世纪前后)
- 湖南省邵阳市(2024年-2025年小学五年级语文)统编版竞赛题(上学期)试卷及答案
- 中医药治疗房颤
- 传媒账号签约合同模板
- 2024年学校柔性引进专家聘用合同
- 医学专题-4双相障碍
- 脑出血一病一品
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 中医生活起居护理-疏仁丽
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 外贸公司管理制度
- 庄园推广策划方案
- 子路曾皙冉有公西华侍坐教案
- 《冬季鸡舍通风》课件
评论
0/150
提交评论