版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省衡水安龙实验中学2024届高三年级学情检测试题数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)2.已知函数的一条切线为,则的最小值为()A. B. C. D.3.已知平面向量,满足,且,则与的夹角为()A. B. C. D.4.设函数,则函数的图像可能为()A. B. C. D.5.集合的子集的个数是()A.2 B.3 C.4 D.86.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.7.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-18.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.9.已知,则()A. B. C. D.210.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.11.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%12.若时,,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若向量与向量垂直,则______.14.在的二项展开式中,所有项的系数的和为________15.已知向量,,若,则________.16.已知复数(为虚数单位),则的模为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.19.(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,,求实数的取值范围.20.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.21.(12分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.22.(10分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。2、A【解析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.3、C【解析】
根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.4、B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.5、D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.6、A【解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.7、B【解析】
由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.8、D【解析】
由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【点睛】本小题主要考查对数运算,属于基础题.9、B【解析】
结合求得的值,由此化简所求表达式,求得表达式的值.【详解】由,以及,解得..故选:B【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.10、D【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.11、D【解析】
A.从第一个图观察居住占23%,与其他比较即可.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D.易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A.CPI一篮子商品中居住占23%,所占权重最大的,故正确.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.12、D【解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.14、1【解析】
设,令,的值即为所有项的系数之和。【详解】设,令,所有项的系数的和为。【点睛】本题主要考查二项式展开式所有项的系数的和的求法─赋值法。一般地,对于,展开式各项系数之和为,注意与“二项式系数之和”区分。15、10【解析】
根据垂直得到,代入计算得到答案.【详解】,则,解得,故,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.16、【解析】,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.【详解】(1)证明:取的中点,连.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中点,连结,∵,∴,又,∴.又由题意得为等边三角形,∴,∵,∴平面.作,则有平面,∴就是直线与平面所成的角.设,则,在等边中,.又在中,,故.在中,由余弦定理得,∴,∴直线与平面所成角的正弦值为.解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,∴.又可得,.∴,.设平面的一个法向量为,由,得,令,则得.又,设直线与平面所成的角为,则.所以直线与平面所成角的正弦值为.【点睛】利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量.解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.求解时注意向量的夹角与线面角间的关系.18、(1)单调递增区间是,单调递减区间是和;(2)最大值是.【解析】
(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同.又因为,所以当时,,即;当或时,,即.所以,函数的单调递增区间是,单调递减区间是和;(2)由(1)知,是的极小值点,所以有,解得,,,所以.因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是.【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.19、(1);(2)【解析】
(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.【详解】(1)由题得,因为在点与相切所以,∴(2)由得,令,只需,设(),当时,,在时为增函数,所以,舍;当时,开口向上,对称轴为,,所以在时为增函数,所以,舍;当时,二次函数开口向下,且,所以在时有一个零点,在时,在时,①当即时,在小于零,所以在时为减函数,所以,符合题意;②当即时,在大于零,所以在时为增函数,所以,舍.综上所述:实数的取值范围为【点睛】本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题.处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值.20、(Ⅰ)(Ⅱ)证明见解析.【解析】由与,得,,的方程为.设,则,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),当且仅当或时,取最小值,此时,,故与共线.21、(1);(2)【解析】
(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【详解】(1)由,得,得,由正弦定理得,显然,同时除以,得.所以.所以.显然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【点睛】本题主要考查了正余弦定理与面积公式在解三角形中的运用,需要根据题意用正弦定理进行边角互化,再根据三角恒等变换进行化简求解等.属于中档题.22、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版离婚合同:两个孩子抚养与财产分配版B版
- 2025年度文化产业园物业委托管理服务合同4篇
- 2025年度商用厨房设备安全检测及认证合同3篇
- 2025年度土地承包经营权流转纠纷调解合同模板4篇
- 2025年度珠宝首饰代工定制合同范本(高品质)4篇
- 2024美甲店美甲技师劳务外包合同参考3篇
- 2025年度智能化工厂承包合同范本8篇
- 2025年度水资源综合利用项目承包合作协议样本4篇
- 2024版画室合伙协议合同范本
- 2025年LED照明产品智能照明系统集成设计与施工合同3篇
- 血液净化十大安全目标课件
- 鼻窦负压置换疗课件
- 国际森林日森林防火教育宣传主题班会PPT模板
- 2020新译林版新教材高中英语必修三重点短语归纳小结
- 药厂质量管理部QA人员岗位设置表
- 剑桥国际少儿英语“第三级”单词默写表
- (精心整理)高中生物必修二非选择题专题训练
- 小学二年级100以内进退位加减法混合运算
- 福建省流动人口信息登记表
- 市委组织部副部长任职表态发言
- HXD1D客运电力机车转向架培训教材
评论
0/150
提交评论