计量经济学第三版(庞浩)版课后答案全_第1页
计量经济学第三版(庞浩)版课后答案全_第2页
计量经济学第三版(庞浩)版课后答案全_第3页
计量经济学第三版(庞浩)版课后答案全_第4页
计量经济学第三版(庞浩)版课后答案全_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学第三版(庞浩)版课后答案全第二章2.2(1)①对于浙江省预算收入与全省生产总值的模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/03/14Time:17:00Sample(adjusted):133Includedobservations:33afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

X0.1761240.00407243.256390.0000C-154.306339.08196-3.9482740.0004R-squared0.983702

Meandependentvar902.5148AdjustedR-squared0.983177

S.D.dependentvar1351.009S.E.ofregression175.2325

Akaikeinfocriterion13.22880Sumsquaredresid951899.7

Schwarzcriterion13.31949Loglikelihood-216.2751

Hannan-Quinncriter.13.25931F-statistic1871.115

Durbin-Watsonstat0.100021Prob(F-statistic)0.000000②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063③关于浙江省财政预算收入与全省生产总值的(3)对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews分析结果如下:DependentVariable:LNYMethod:LeastSquaresDate:12/03/14Time:18:00Sample(adjusted):133Includedobservations:33afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

LNX0.9802750.03429628.582680.0000C-1.9182890.268213-7.1521210.0000R-squared0.963442

Meandependentvar5.573120AdjustedR-squared0.962263

S.D.dependentvar1.684189S.E.ofregression0.327172

Akaikeinfocriterion0.662028Sumsquaredresid3.318281

Schwarzcriterion0.752726Loglikelihood-8.923468

Hannan-Quinncriter.0.692545F-statistic816.9699

Durbin-Watsonstat0.096208Prob(F-statistic)0.000000①模型方程为:lnY=0.980275lnX-1.918289②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t检验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%2.4(1)对建筑面积与建造单位成本模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/01/14Time:12:40Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X-64.184004.809828-13.344340.0000C1845.47519.2644695.796880.0000R-squared0.946829

Meandependentvar1619.333AdjustedR-squared0.941512

S.D.dependentvar131.2252S.E.ofregression31.73600

Akaikeinfocriterion9.903792Sumsquaredresid10071.74

Schwarzcriterion9.984610Loglikelihood-57.42275

Hannan-Quinncriter.9.873871F-statistic178.0715

Durbin-Watsonstat1.172407Prob(F-statistic)0.000000由上可得:建筑面积与建造成本的回归方程为:Y=1845.475--64.18400X(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。(3)①首先进行点预测,由Y=1845.475--64.18400X得,当x=4.5,y=1556.647②再进行区间估计:用Eviews分析: YX

Mean

1619.333

3.523333

Median

1630.000

3.715000

Maximum

1860.000

6.230000

Minimum

1419.000

0.600000

Std.Dev.

131.2252

1.989419

Skewness

0.003403-0.060130

Kurtosis

2.346511

1.664917

Jarque-Bera

0.213547

0.898454

Probability

0.898729

0.638121

Sum

19432.00

42.28000

SumSq.Dev.

189420.7

43.53567

Observations

12

12由上表可知,∑x2=∑(Xi—X)2=δ2x(n—1)=

1.9894192x(12—1)=43.5357(Xf—X)2=(4.5—

3.523333)2=0.95387843当Xf=4.5时,将相关数据代入计算得到:1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843即Yf的置信区间为(1556.647—478.1231,1556.647+478.1231)第三章3.21)对出口货物总额计量经济模型,用Eviews分析结果如下::DependentVariable:YMethod:LeastSquaresDate:12/01/14Time:20:25Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X20.1354740.01279910.584540.0000X318.853489.7761811.9285120.0729C-18231.588638.216-2.1105730.0520R-squared0.985838

Meandependentvar6619.191AdjustedR-squared0.983950

S.D.dependentvar5767.152S.E.ofregression730.6306

Akaikeinfocriterion16.17670Sumsquaredresid8007316.

Schwarzcriterion16.32510Loglikelihood-142.5903

Hannan-Quinncriter.16.19717F-statistic522.0976

Durbin-Watsonstat1.173432Prob(F-statistic)0.000000①由上可知,模型为:Y=0.135474X2+18.85348X3-18231.58②对模型进行检验: 1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F检验,F=522.0976>F(2,15)=4.77,回归方程显著3)t检验,t统计量分别为X2的系数对应t值为10.58454,大于t(15)=2.131,系数是显著的,X3的系数对应t值为1.928512,小于t(15)=2.131,说明此系数是不显著的。(2)对于对数模型,用Eviews分析结果如下:DependentVariable:LNYMethod:LeastSquaresDate:12/01/14Time:20:25Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

LNX21.5642210.08898817.577890.0000LNX31.7606950.6821152.5812290.0209C-20.520485.432487-3.7773630.0018R-squared0.986295

Meandependentvar8.400112AdjustedR-squared0.984467

S.D.dependentvar0.941530S.E.ofregression0.117343

Akaikeinfocriterion-1.296424Sumsquaredresid0.206540

Schwarzcriterion-1.148029Loglikelihood14.66782

Hannan-Quinncriter.-1.275962F-statistic539.7364

Durbin-Watsonstat0.686656Prob(F-statistic)0.000000①由上可知,模型为:LNY=-20.52048+1.564221LNX2+1.760695LNX3②对模型进行检验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好。2)F检验,F=539.7364>F(2,15)=4.77,回归方程显著。3)t检验,t统计量分别为-3.777363,17.57789,2.581229,均大于t(15)=2.131,所以这些系数都是显著的。(3)①(1)式中的经济意义:工业增加1亿元,出口货物总额增加0.135474亿元,人民币汇率增加1,出口货物总额增加18.85348亿元。②(2)式中的经济意义:工业增加额每增加1%,出口货物总额增加1.564221%,人民币汇率每增加1%,出口货物总额增加1.760695%3.3(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/01/14Time:20:30Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X0.0864500.0293632.9441860.0101T52.370315.20216710.067020.0000C-50.0163849.46026-1.0112440.3279R-squared0.951235

Meandependentvar755.1222AdjustedR-squared0.944732

S.D.dependentvar258.7206S.E.ofregression60.82273

Akaikeinfocriterion11.20482Sumsquaredresid55491.07

Schwarzcriterion11.35321Loglikelihood-97.84334

Hannan-Quinncriter.11.22528F-statistic146.2974

Durbin-Watsonstat2.605783Prob(F-statistic)0.000000①模型为:Y=0.086450X+52.37031T-50.01638②对模型进行检验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好。2)F检验,F=539.7364>F(2,15)=4.77,回归方程显著。3)t检验,t统计量分别为2.944186,10.06702,均大于t(15)=2.131,所以这些系数都是显著的。③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元。(2)用Eviews分析:①DependentVariable:YMethod:LeastSquaresDate:12/01/14Time:22:30Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

T63.016764.54858113.854160.0000C-11.5817158.02290-0.1996060.8443R-squared0.923054

Meandependentvar755.1222AdjustedR-squared0.918245

S.D.dependentvar258.7206S.E.ofregression73.97565

Akaikeinfocriterion11.54979Sumsquaredresid87558.36

Schwarzcriterion11.64872Loglikelihood-101.9481

Hannan-Quinncriter.11.56343F-statistic191.9377

Durbin-Watsonstat2.134043Prob(F-statistic)0.000000②DependentVariable:XMethod:LeastSquaresDate:12/01/14Time:22:34Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

T123.151631.841503.8676440.0014C444.5888406.17861.0945650.2899R-squared0.483182

Meandependentvar1942.933AdjustedR-squared0.450881

S.D.dependentvar698.8325S.E.ofregression517.8529

Akaikeinfocriterion15.44170Sumsquaredresid4290746.

Schwarzcriterion15.54063Loglikelihood-136.9753

Hannan-Quinncriter.15.45534F-statistic14.95867

Durbin-Watsonstat1.052251Prob(F-statistic)0.001364以上分别是y与T,X与T的一元回归模型分别是:Y=63.01676T-11.58171X=123.1516T+444.5888(3)对残差进行模型分析,用Eviews分析结果如下:DependentVariable:E1Method:LeastSquaresDate:12/03/14Time:20:39Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

E20.0864500.0284313.0407420.0078C3.96E-1413.880832.85E-151.0000R-squared0.366239

Meandependentvar2.30E-14AdjustedR-squared0.326629

S.D.dependentvar71.76693S.E.ofregression58.89136

Akaikeinfocriterion11.09370Sumsquaredresid55491.07

Schwarzcriterion11.19264Loglikelihood-97.84334

Hannan-Quinncriter.11.10735F-statistic9.246111

Durbin-Watsonstat2.605783Prob(F-statistic)0.007788模型为:E1=0.086450E2+3.96e-14参数:斜率系数α为0.086450,截距为3.96e-14(3)由上可知,β2与α2的系数是一样的。回归系数与被解释变量的残差系数是一样的,它们的变化规律是一致的。第五章5.3(1)由Eviews软件分析得:DependentVariable:YMethod:LeastSquaresDate:12/10/14Time:16:00Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

X1.2442810.07903215.744110.0000C242.4488291.19400.8326020.4119R-squared0.895260

Meandependentvar4443.526AdjustedR-squared0.891649

S.D.dependentvar1972.072S.E.ofregression649.1426

Akaikeinfocriterion15.85152Sumsquaredresid12220196

Schwarzcriterion15.94404Loglikelihood-243.6986

Hannan-Quinncriter.15.88168F-statistic247.8769

Durbin-Watsonstat1.078581Prob(F-statistic)0.000000由上表可知,2007年我国农村居民家庭人均消费支出(x)对人均纯收入(y)的模型为:Y=1.244281X+242.4488(2)①由图形法检验由上图可知,模型可能存在异方差。②Goldfeld-Quanadt检验1)定义区间为1-12时,由软件分析得:DependentVariable:Y1Method:LeastSquaresDate:12/10/14Time:11:34Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X11.4852960.5003862.9682970.0141C-550.54921220.063-0.4512470.6614R-squared0.468390

Meandependentvar3052.950AdjustedR-squared0.415229

S.D.dependentvar550.5148S.E.ofregression420.9803

Akaikeinfocriterion15.07406Sumsquaredresid1772245.

Schwarzcriterion15.15488Loglikelihood-88.44437

Hannan-Quinncriter.15.04414F-statistic8.810789

Durbin-Watsonstat2.354167Prob(F-statistic)0.014087得∑e1i2=1772245.2)定义区间为20-31时,由软件分析得:DependentVariable:Y1Method:LeastSquaresDate:12/10/14Time:16:36Sample:2031Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X11.0869400.1488637.3016230.0000C1173.307733.25201.6001410.1407R-squared0.842056

Meandependentvar6188.329AdjustedR-squared0.826262

S.D.dependentvar2133.692S.E.ofregression889.3633

Akaikeinfocriterion16.56990Sumsquaredresid7909670.

Schwarzcriterion16.65072Loglikelihood-97.41940

Hannan-Quinncriter.16.53998F-statistic53.31370

Durbin-Watsonstat2.339767Prob(F-statistic)0.000026得∑e2i2=7909670.3)根据Goldfeld-Quanadt检验,F统计量为:F=∑e2i2/∑e1i2=7909670./1772245=4.4631在α=0.05水平下,分子分母的自由度均为10,查分布表得临界值F0.05(10,10)=2.98,因为F=4.4631>F0.05(10,10)=2.98,所以拒绝原假设,此检验表明模型存在异方差。(3)1)采用WLS法估计过程中,①用权数w1=1/X,建立回归得:DependentVariable:YMethod:LeastSquaresDate:12/09/14Time:11:13Sample:131Includedobservations:31Weightingseries:W1VariableCoefficientStd.Errort-StatisticProb.

X1.4258590.11910411.971570.0000C-334.8131344.3523-0.9722980.3389WeightedStatisticsR-squared0.831707

Meandependentvar3946.082AdjustedR-squared0.825904

S.D.dependentvar536.1907S.E.ofregression536.6796

Akaikeinfocriterion15.47102Sumsquaredresid8352726.

Schwarzcriterion15.56354Loglikelihood-237.8008

Hannan-Quinncriter.15.50118F-statistic143.3184

Durbin-Watsonstat1.369081Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.875855

Meandependentvar4443.526AdjustedR-squared0.871574

S.D.dependentvar1972.072S.E.ofregression706.7236

Sumsquaredresid14484289Durbin-Watsonstat1.532908

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.299395

Prob.F(2,28)0.7436Obs*R-squared0.649065

Prob.Chi-Square(2)0.7229ScaledexplainedSS1.798067

Prob.Chi-Square(2)0.4070TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/10/14Time:21:13Sample:131Includedobservations:31CollineartestregressorsdroppedfromspecificationVariableCoefficientStd.Errort-StatisticProb.

C61927.891045682.0.0592220.9532WGT^2-593927.91173622.-0.5060640.6168X*WGT^2282.4407747.97800.3776060.7086R-squared0.020938

Meandependentvar269442.8AdjustedR-squared-0.048995

S.D.dependentvar689166.5S.E.ofregression705847.6

Akaikeinfocriterion29.86395Sumsquaredresid1.40E+13

Schwarzcriterion30.00273Loglikelihood-459.8913

Hannan-Quinncriter.29.90919F-statistic0.299395

Durbin-Watsonstat1.922336Prob(F-statistic)0.743610从上可知,nR2=0.649065,比较计算的统计量的临界值,因为nR2=0.649065<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.425859X-334.8131t=(11.97157)(-0.972298)R2=0.875855F=143.3184DW=1.369081②用权数w2=1/x2,用回归分析得:DependentVariable:YMethod:LeastSquaresDate:12/09/14Time:21:08Sample:131Includedobservations:31Weightingseries:W2VariableCoefficientStd.Errort-StatisticProb.

X1.5570400.14539210.709220.0000C-693.1946376.4760-1.8412720.0758WeightedStatisticsR-squared0.798173

Meandependentvar3635.028AdjustedR-squared0.791214

S.D.dependentvar1029.830S.E.ofregression466.8513

Akaikeinfocriterion15.19224Sumsquaredresid6320554.

Schwarzcriterion15.28475Loglikelihood-233.4797

Hannan-Quinncriter.15.22240F-statistic114.6875

Durbin-Watsonstat1.562975Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.834850

Meandependentvar4443.526AdjustedR-squared0.829156

S.D.dependentvar1972.072S.E.ofregression815.1229

Sumsquaredresid19268334Durbin-Watsonstat1.678365

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.299790

Prob.F(3,27)0.8252Obs*R-squared0.999322

Prob.Chi-Square(3)0.8014ScaledexplainedSS1.789507

Prob.Chi-Square(3)0.6172TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/10/14Time:21:29Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

C-111661.8549855.7-0.2030750.8406WGT^2426220.22240181.0.1902620.8505X^2*WGT^20.1948880.5163950.3774020.7088X*WGT^2-583.21512082.820-0.2800120.7816R-squared0.032236

Meandependentvar203888.8AdjustedR-squared-0.075293

S.D.dependentvar419282.0S.E.ofregression434780.1

Akaikeinfocriterion28.92298Sumsquaredresid5.10E+12

Schwarzcriterion29.10801Loglikelihood-444.3062

Hannan-Quinncriter.28.98330F-statistic0.299790

Durbin-Watsonstat1.835854Prob(F-statistic)0.825233从上可知,nR2=0.999322,比较计算的统计量的临界值,因为nR2=0.999322<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.557040X-693.1946t=(10.70922)(-1.841272)R2=0.798173F=114.6875DW=1.562975③用权数w3=1/sqr(x),用回归分析得:DependentVariable:YMethod:LeastSquaresDate:12/09/14Time:21:35Sample:131Includedobservations:31Weightingseries:W3VariableCoefficientStd.Errort-StatisticProb.

X1.3301300.09834513.525070.0000C-47.40242313.1154-0.1513900.8807WeightedStatisticsR-squared0.863161

Meandependentvar4164.118AdjustedR-squared0.858442

S.D.dependentvar991.2079S.E.ofregression586.9555

Akaikeinfocriterion15.65012Sumsquaredresid9990985.

Schwarzcriterion15.74263Loglikelihood-240.5768

Hannan-Quinncriter.15.68027F-statistic182.9276

Durbin-Watsonstat1.237664Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.890999

Meandependentvar4443.526AdjustedR-squared0.887240

S.D.dependentvar1972.072S.E.ofregression662.2171

Sumsquaredresid12717412Durbin-Watsonstat1.314859

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.423886

Prob.F(2,28)0.6586Obs*R-squared0.911022

Prob.Chi-Square(2)0.6341ScaledexplainedSS2.768332

Prob.Chi-Square(2)0.2505TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/09/14Time:20:36Sample:131Includedobservations:31CollineartestregressorsdroppedfromspecificationVariableCoefficientStd.Errort-StatisticProb.

C1212308.2141958.0.5659810.5759WGT^2-715673.01301839.-0.5497400.5869X^2*WGT^2-0.0151940.082276-0.1846770.8548R-squared0.029388

Meandependentvar322289.8AdjustedR-squared-0.039942

S.D.dependentvar863356.7S.E.ofregression880429.8

Akaikeinfocriterion30.30597Sumsquaredresid2.17E+13

Schwarzcriterion30.44475Loglikelihood-466.7426

Hannan-Quinncriter.30.35121F-statistic0.423886

Durbin-Watsonstat1.887426Prob(F-statistic)0.658628从上可知,nR2=0.911022,比较计算的统计量的临界值,因为nR2=0.911022<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.330130X-47.40242t=(13.52507)(-0.151390)R2=0.863161F=182.9276DW=1.237664经过检验发现,用权数w1的效果最好,所以综上可知,即修改后的结果为:Y=1.425859X-334.8131t=(11.97157)(-0.972298)R2=0.875855F=143.3184DW=1.369081第六章6.1(1)建立居民收入-消费模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/20/14Time:14:22Sample:119Includedobservations:19VariableCoefficientStd.Errort-StatisticProb.

X0.6904880.01287753.620680.0000C79.9300412.399196.4463900.0000R-squared0.994122

Meandependentvar700.2747AdjustedR-squared0.993776

S.D.dependentvar246.4491S.E.ofregression19.44245

Akaikeinfocriterion8.872095Sumsquaredresid6426.149

Schwarzcriterion8.971510Loglikelihood-82.28490

Hannan-Quinncriter.8.888920F-statistic2875.178

Durbin-Watsonstat0.574663Prob(F-statistic)0.000000所得模型为: Y=0.690488X+79.93004Se=(0.012877)(12.39919)

t=(53.62068)(6.446390)R2=0.994122F=2875.178DW=0.574663(2)1)检验模型中存在的问题①做出残差图如下:残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶自相关。②该回归方程可决系数较高,回归系数均显著。对样本量为19,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.180,dU=1.401,模型中DW=0.574663,<dL,显然模型中有自相关。③对模型进行BG检验,用Eviews分析结果如下:Breusch-GodfreySerialCorrelationLMTest:F-statistic4.811108

Prob.F(2,15)0.0243Obs*R-squared7.425088

Prob.Chi-Square(2)0.0244TestEquation:DependentVariable:RESIDMethod:LeastSquaresDate:12/20/14Time:15:03Sample:119Includedobservations:19Presamplemissingvaluelaggedresidualssettozero.VariableCoefficientStd.Errort-StatisticProb.

X-0.0032750.010787-0.3035860.7656C1.92954610.355930.1863230.8547RESID(-1)0.6088860.2927072.0801890.0551RESID(-2)0.0899880.2911200.3091100.7615R-squared0.390794

Meandependentvar-1.65E-13AdjustedR-squared0.268953

S.D.dependentvar18.89466S.E.ofregression16.15518

Akaikeinfocriterion8.587023Sumsquaredresid3914.848

Schwarzcriterion8.785852Loglikelihood-77.57671

Hannan-Quinncriter.8.620672F-statistic3.207406

Durbin-Watsonstat1.570723Prob(F-statistic)0.053468如上表显示,LM=TR2=7.425088,其p值为0.0244,表明存在自相关。2)对模型进行处理:①采取广义差分法a)为估计自相关系数ρ。对et进行滞后一期的自回归,用EViews分析结果如下:DependentVariable:EMethod:LeastSquaresDate:12/20/14Time:15:04Sample(adjusted):219Includedobservations:18afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

E(-1)0.6573520.1776263.7007590.0018R-squared0.440747

Meandependentvar1.717433AdjustedR-squared0.440747

S.D.dependentvar17.85134S.E.ofregression13.34980

Akaikeinfocriterion8.074833Sumsquaredresid3029.692

Schwarzcriterion8.124298Loglikelihood-71.67349

Hannan-Quinncriter.8.081653Durbin-Watsonstat1.634573由上可知,ρ=0.657352b)对原模型进行广义差分回归,用Eviews进行分析所得结果如下:DependentVariable:Y-0.657352*Y(-1)Method:LeastSquaresDate:12/20/14Time:15:04Sample(adjusted):219Includedobservations:18afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

C35.977618.1035464.4397370.0004X-0.657352*X(-1)0.6686950.02064232.395120.0000R-squared0.984983

Meandependentvar278.1002AdjustedR-squared0.984044

S.D.dependentvar105.1781S.E.ofregression13.28570

Akaikeinfocriterion8.115693Sumsquaredresid2824.158

Schwarzcriterion8.214623Loglikelihood-71.04124

Hannan-Quinncriter.8.129334F-statistic1049.444

Durbin-Watsonstat1.830746Prob(F-statistic)0.000000由上图可知回归方程为:Yt*=35.97761+0.668695Xt*Se=(8.103546)(0.020642)t=(4.439737)(32.39512)R2=0.984983F=1049.444DW=1.830746式中,Yt*=Yt-0.657352Yt-1,Xt*=Xt-0.657352Xt-1由于使用了广义差分数据,样本容量减少了1个,为18个。查5%显著水平的DW统计表可知,dL=1.158,dU=1.391模型中DW=1,830746,du<DW<4-dU,说明在5%的显著水平下广义差分模型中已无自相关。可决系数R2,t,F统计量也均达到理想水平。由差分方程,β1=35.97761/(1-0.657352)=104.9987由此最终的消费模型为:Yt=104.9987+0.668695Xt

②用科克伦-奥克特迭代法,用EVIews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/20/14Time:15:15Sample(adjusted):219Includedobservations:18afteradjustmentsConvergenceachievedafter5iterationsVariableCoefficientStd.Errort-StatisticProb.

C104.044923.876184.3576870.0006X0.6692620.02083132.127570.0000AR(1)0.6300150.1642183.8364620.0016R-squared0.997097

Meandependentvar719.1867AdjustedR-squared0.996710

S.D.dependentvar238.9866S.E.ofregression13.70843

Akaikeinfocriterion8.224910Sumsquaredresid2818.814

Schwarzcriterion8.373306Loglikelihood-71.02419

Hannan-Quinncriter.8.245372F-statistic2575.896

Durbin-Watsonstat1.787878Prob(F-statistic)0.000000InvertedARRoots

.63所得方程为:Yt=104.0449+0.669262Xt

(3)经济意义:人均实际收入每增加1元,平均说来人均时间消费支出将增加0.669262元。6.4(1)针对对数模型,用Eviews分析结果如下:DependentVariable:LNYMethod:LeastSquaresDate:12/27/14Time:16:13Sample:19802000Includedobservations:21VariableCoefficientStd.Errort-StatisticProb.

LNX0.9510900.03889724.451230.0000C2.1710410.2410259.0075290.0000R-squared0.969199

Meandependentvar8.039307AdjustedR-squared0.967578

S.D.dependentvar0.565486S.E.ofregression0.101822

Akaikeinfocriterion-1.640785Sumsquaredresid0.196987

Schwarzcriterion-1.541307Loglikelihood19.22825

Hannan-Quinncriter.-1.619196F-statistic597.8626

Durbin-Watsonstat1.159788Prob(F-statistic)0.000000所得模型为:lnY=0,951090lnX+2.171041se=(0.038897)(0.241025)t=(24.45123)(9.007529)R2=0.969199F=597.8626DW=1.159788

2)检验模型的自相关性该回归方程可决系数较高,回归系数均显著。对样本量为21,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.221,dU=1.420,模型中DW=1.159788<dL,显然模型中有自相关。

(2)用广义差分法处理模型:1)为估计自相关系数ρ。对et进行滞后一期的自回归,用EViews分析结果如下:DependentVariable:EMethod:LeastS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论