版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:§3.2一元二次不等式及其解法第1课时授课类型:新授课【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:…………(1)2.讲授新课1)一元二次不等式的定义象这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:二次函数有两个零点:于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数的图象,如图,观察函数图象,可知:当x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即;当0<x<5时,函数图象位于x轴下方,此时,y<0,即;所以,不等式的解集是,从而解决了本节开始时提出的问题。3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:
一般地,怎样确定一元二次不等式>0与<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程=0的根的情况(2)抛物线的开口方向,也就是a的符号总结讨论结果:(l)抛物线
(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程=0的判别式三种取值情况(Δ>0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分Δ>O,Δ=0,Δ<0三种情况,得到一元二次不等式>0与<0的解集一元二次不等式的解集:设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R[范例讲解]例2(课本第87页)求不等式的解集.解:因为.所以,原不等式的解集是例3(课本第88页)解不等式.解:整理,得.因为无实数解,所以不等式的解集是.从而,原不等式的解集是.3.随堂练习课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤:①将二次项系数化为“+”:A=>0(或<0)(a>0)②计算判别式,分析不等式的解的情况:ⅰ.>0时,求根<,ⅱ.=0时,求根==,ⅲ.<0时,方程无解,③写出解集.5.评价设计课本第89页习题3.2[A]组第1题课题:§3.2一元二次不等式及其解法第2课时授课类型:新授课【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离sm和汽车的速度xkm/h有如下的关系:在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h)解:设这辆汽车刹车前的速度至少为xkm/h,根据题意,我们得到移项整理得:显然,方程有两个实数根,即。所以不等式的解集为在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x辆摩托车,根据题意,我们得到移项整理,得因为,所以方程有两个实数根由二次函数的图象,得不等式的解为:50<x<60因为x只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益。3.随堂练习1课本第89页练习2[补充例题]应用一(一元二次不等式与一元二次方程的关系)例:设不等式的解集为,求?应用二(一元二次不等式与二次函数的关系)例:设,且,求的取值范围.改:设对于一切都成立,求的范围.改:若方程有两个实根,且,,求的范围.随堂练习21、已知二次不等式的解集为,求关于的不等式的解集.2、若关于的不等式的解集为空集,求的取值范围.改1:解集非空改2:解集为一切实数4.课时小结进一步熟练掌握一元二次不等式的解法一元二次不等式与一元二次方程以及一元二次函数的关系5.评价设计课本第89页的习题3.2[A]组第3、5题课题:§3.3.1二元一次不等式(组)与平面区域第1课时授课类型:新授课【教学目标】1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。【教学重点】用二元一次不等式(组)表示平面区域;【教学难点】【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型把实际问题数学问题:设用于企业贷款的资金为x元,用于个人贷款的资金为y元。(把文字语言符号语言)(资金总数为25000000元)(1)(预计企业贷款创收12%,个人贷款创收10%,共创收30000元以上)即(2)(用于企业和个人贷款的资金数额都不能是负值)(3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。3.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y<6的解集所表示的图形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)【应用举例】例1画出不等式表示的平面区域。解:先画直线(画成虚线).取原点(0,0),代入+4y-4,∵0+4×0-4=-4<0,∴原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当时,常把原点作为此特殊点。变式1、画出不等式所表示的平面区域。变式2、画出不等式所表示的平面区域。例2用平面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《社区足球赛方案》课件
- 《汽车客运站调研》课件
- 2024年黑龙江林业职业技术学院单招职业技能测试题库完整答案
- 单位管理制度集合大全【人事管理篇】
- 《综合分析观点类》课件
- 单位管理制度汇编大全【人员管理】
- 2024的前台工作计划(35篇)
- 单位管理制度范文大合集【职工管理篇】
- 单位管理制度范例汇编【人员管理篇】十篇
- 《禽流感的预防措施》课件
- 建筑起重司索信号工共40页PPT课件
- 罗西尼亚那第二号,Rossiniana No.2;朱利亚尼,Mauro Giuliani(古典吉他谱)
- 小学英语单词大全(含中文翻译)
- 经颅多普勒超声(TCD)
- 激励约束考核实施细则
- 抽奖券模板(可修改)
- 高压蒸汽灭菌效果监测记录簿表(完整版)
- 编织密度自动计算
- 硝酸及液体硝酸铵生产行业风险分级管控体系实施指南
- 瑶医目诊图-望面诊病图解-目诊
- 染色体标本的制作及组型观察
评论
0/150
提交评论