专题95抛物线2022年高考数学一轮复习(新高考浙江)(讲)_第1页
专题95抛物线2022年高考数学一轮复习(新高考浙江)(讲)_第2页
专题95抛物线2022年高考数学一轮复习(新高考浙江)(讲)_第3页
专题95抛物线2022年高考数学一轮复习(新高考浙江)(讲)_第4页
专题95抛物线2022年高考数学一轮复习(新高考浙江)(讲)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学一轮复习讲练测(新高考·浙江)第九章平面解析几何专题9.5抛物线(讲)【考试要求】1.掌握抛物线的定义、标准方程、几何图形及简单几何性质.2.会解决直线与抛物线的位置关系的问题.3.了解方程与曲线的对应关系和求曲线方程的基本方法.4.理解数形结合、用代数方法处理几何问题的思想.了解圆锥曲线的简单应用.【高考预测】高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多.【知识与素养】知识点1.抛物线的标准方程及几何性质图形标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)顶点O(0,0)范围x≥0,x≤0,y≥0,y≤0,对称轴x轴y轴焦点离心率e=1准线方程焦半径【典例1】(2021·全国高考真题)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.【答案】【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,因为,所以,,所以的准线方程为故答案为:.【总结提升】1.求抛物线的标准方程的方法(1)定义法根据抛物线的定义,确定p的值(系数p是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择.(2)待定系数法①根据抛物线焦点是在x轴上还是在y轴上,设出相应形式的标准方程,然后根据条件确定关于p的方程,解出p,从而写出抛物线的标准方程.②当焦点位置不确定时,有两种方法解决:法一分情况讨论,注意要对四种形式的标准方程进行讨论,对于焦点在x轴上的抛物线,为避免开口方向不确定可分为y2=2px(p>0)和y2=-2px(p>0)两种情况求解法二设成y2=mx(m≠0),若m>0,开口向右;若m<0,开口向左;若m有两个解,则抛物线的标准方程有两个.同理,焦点在y轴上的抛物线可以设成x2=my(m≠0).如果不确定焦点所在的坐标轴,应考虑上述两种情况设方程2.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.知识点2.抛物线的定义及应用平面内与一个定点和一条定直线(不经过点)的距离相等的点的轨迹叫做抛物线,定点叫做抛物线的焦点,定直线叫做抛物线的准线.【典例2】(2017·全国高考真题(理))已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.【答案】6【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.【总结提升】利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.知识点3.直线和抛物线的位置关系(1)将直线的方程与抛物线的方程y2=2px(p>0)联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为Δ.若,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若①Δ>0直线和抛物线相交,有两个交点;②Δ=0直线和抛物线相切,有一个公共点;③Δ<0直线和抛物线相离,无公共点.(2)直线与抛物线的相交弦设直线交抛物线于点两点,则==同理可得这里的求法通常使用韦达定理,需作以下变形:【典例3】(2021·全国高考真题(文))已知抛物线的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.【答案】(1);(2)最大值为.【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.【总结提升】1.在解决直线与抛物线位置关系的问题时,其方法类似于直线与椭圆的位置关系.在解决此类问题时,除考虑代数法外,还应借助平面几何的知识,利用数形结合的思想求解.2.解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解.【重点难点突破】考点1抛物线的标准方程及几何性质【典例4】(2021·北京高考真题)已知抛物线的焦点为,点在抛物线上,垂直轴与于点.若,则点的横坐标为_______;的面积为_______.【答案】5【分析】根据焦半径公式可求的横坐标,求出纵坐标后可求.【详解】因为抛物线的方程为,故且.因为,,解得,故,所以,故答案为:5;.【总结提升】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.【变式1】(2018·北京高考真题(文))已知直线l过点(1,0)且垂直于𝑥轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.【答案】【解析】由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.考点2抛物线的定义及应用【典例5】(2021·湖北黄石市·高三开学考试)抛物线的焦点为F,A,B是抛物线上两点,且,且中点到准线的距离为3,则线段的中点到准线的距离为()A.1 B.2 C. D.3【答案】D【分析】结合抛物线的定义求得,由此求得线段的中点到准线的距离.【详解】抛物线方程为,则,由于中点到准线的距离为3,结合抛物线的定义可知,即,所以线段的中点到准线的距离为.故选:D【总结提升】1.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.2.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.提醒:利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用.【变式2】(2021·全国高二课时练习)抛物线的焦点为,已知点,为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为______.【答案】【分析】设,,根据中位线定理以及抛物线定义可得,在中,由余弦定理以及基本不等式可得,即可求得的最大值.【详解】设,,作垂直抛物线的准线于点,垂直抛物线的准线于点.由抛物线的定义,知,.由余弦定理得.又,∴,当且仅当时,等号成立,∴,∴,即的最大值为.故答案为:.考点3直线和抛物线的位置关系【典例6】(2021·浙江高考真题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,(1)求抛物线的方程;(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.【答案】(1);(2).【分析】(1)求出的值后可求抛物线的方程.(2)设,,,联立直线的方程和抛物线的方程后可得,求出直线的方程,联立各直线方程可求出,根据题设条件可得,从而可求的范围.【详解】(1)因为,故,故抛物线的方程为:.(2)设,,,所以直线,由题设可得且.由可得,故,因为,故,故.又,由可得,同理,由可得,所以,整理得到,故,令,则且,故,故即,解得或或.故直线在轴上的截距的范围为或或.【特别提醒】解决直线与抛物线的位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线相交的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=|xA|+|xB|+p或|AB|=|yA|+|yB|+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.抛物线弦的中点坐标和方程的两根之和的密切联系是解决中点弦问题的关键,方程的思想也是解析几何的核心思想.【变式3】(浙江高考真题)如图,设抛物线y2(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.【答案】(Ⅰ)p=2;(Ⅱ)(-∞,0)∪(2,【解析】(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=–1的距离,由抛物线的定义得p2(Ⅱ)由(Ⅰ)得,抛物线的方程为y2=4x,F(1,0),可设因为AF不垂直于y轴,可设直线AF:x=sy+1,(s≠0),由y2=4x,故y1y2又直线AB的斜率为2tt2-1从而得直线FN:y=-t2-12t(x-1)设M(m,0),由A,M,N三点共线得2tt于是m=2所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).【典例7】(2020·浙江省高考真题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).(Ⅰ)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)当时,的方程为,故抛物线的焦点坐标为;(Ⅱ)设,由,,由在抛物线上,所以,又,,,.由即,所以,,,所以,的最大值为,此时.法2:设直线,.将直线的方程代入椭圆得:,所以点的纵坐标为.将直线的方程代入抛物线得:,所以,解得,因此,由解得,所以当时,取到最大值为.【易错提醒】直线和抛物线有一个交点有两种情况:相切以及平行于对称轴.【变式4】(2017浙江,21)如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求的最大值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)设直线AP的斜率为k,则,∵,∴直线AP斜率的取值范围是.(Ⅱ)联立直线AP与BQ的方程解得点Q的横坐标是,因为|PA|==|PQ|=,所以|PA||PQ|=令,因为,所以f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.【典例8】(2017·全国高考真题(文))设、为曲线:上两点,与的横坐标之和为.(1)求直线的斜率;(2)为曲线上一点,在处的切线与直线平行,且,求直线的方程.【答案】(1);(2).【解析】(1)设,,则,,,,于是直线AB的斜率;(2)由,得.设,由题设知,解得,于是.设直线的方程为,故线段的中点为,.将代入得.当,即时,.从而.由题设知,即,解得.所以直线的方程为.【变式5】(2019·浙江高考真题)如图,已知点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.(1)求的值及抛物线的准线方程;(2)求的最小值及此时点的坐标.【答案】(1)1,;(2),.【解析】(1)由题意可得,则,抛物线方程为,准线方程为.(2)设,设直线AB的方程为,与抛物线方程联立可得:,故:,,设点C的坐标为,由重心坐标公式可得:,,令可得:,则.即,由斜率公式可得:,直线AC的方程为:,令可得:,故,且,由于,代入上式可得:,由可得,则,则.当且仅当,即,时等号成立.此时,,则点G的坐标为.【学科素养提升】分类与整合思想1.分类整合思想的含义:分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.2.分类与整合思想在解题中的应用(1)由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.(3)由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.3.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形;(6)数形结合;(7)缩小范围等.4.分类讨论遵循的原则是:不遗漏、不重复,科学地划分,分清主次,不越级讨论.5.解题时把好

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论