人教初中数学八上因式分解说课稿3_第1页
人教初中数学八上因式分解说课稿3_第2页
人教初中数学八上因式分解说课稿3_第3页
人教初中数学八上因式分解说课稿3_第4页
人教初中数学八上因式分解说课稿3_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE因式分解说课稿一、说教材1、地位与作用。今天我说课的内容是因式分解。因式分解是代数式的一种重要恒等变形。.它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。因此,它起到了承上启下的作用。本章着重阐述了三个方面:一是因式分解的概念,二是分解因式的方法,三是分解因式的应用。中考中关于因式分解的题目大多一填空、选择为主。通过本节课的学习,不仅使学生掌握因式分解的概念和方法,更要掌握分解因式的思想,这为后面其它知识的学习作好准备。2、关于学习目标根据因式分解这章的内容,对于掌握因式分解的各种方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:1、知识目标:理解因式分解的意义,掌握因式分解的基本方法,并能解决实际问题。2、能力目标:在因式分解的过程中,体会因式分解与整式乘法的互逆关系,进一步提高代数式的恒等变形能力。3、情感目标:培养学生独立思考,勇于探索的精神,让学生体验到成功的喜悦.3、关于学习的重点与难点:重点:熟练运用提取公因式法和公式法进行因式分解。难点:灵活运用公式法分解因式,正确理解公式中a、b的意义。二、说学习过程本节课,一共设以下几个环节:第一环节:填一填,读一读(1)分解因式:把一个_________化成几个_______的_____形式,这种变形叫做把这个多项式分解因式。(2)公因式:一个多项式中,各项都含有的___________叫做这个多项式的公因式。(3)平方差公式:__________________________完全平方公式:__________________________※安排这一环节的目的既是让学生记忆知识,也是培养学生阅读的习惯,课上可以让不同的同学起来读,看谁读得好,从而激发学生的学习兴趣,在读的过程中注意眼到、口到、心到。当学生读明白、理解知识的内涵之后,从此也许会着迷于数学的魅力。第二个环节:做一做,议一议教师首先出示问题:下列从左边到右边的变形中,属于分解因式的是()A、ma+mb+m=m(a+b)B、(2x+1)(2x-1)=4x2-1C、x2-2x+1=x(x-2)+1D、x+1=x(1+)总结:_____________________________练习:x2+ax-b可分解为(x+1)(x-2)则a=____b=____※

我设计的这个题目中的四个选项都不是分解因式,学生会出现不同的选项,安排这一过程的意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维能力和表达、交流能力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,体会出分解因式是一种恒等变形,从而使学生就真正理解因式分解的内涵。第三个环节:练一练,思一思:关于分解因式方法的复习(一)提公因式法问题:分解因式:(1)x2y-xy2(2)-6a2b-12ab2+6ab(3)总结:___________巩固练习:(1)多项式-4x2y3z+12x3y4中各项的公因式是__________(2)公园有两块长方形的草地,这两个长方形的长分别是13.2m、16.8m,宽都是8m,这两块草地的总面积是_____________________(3)分解因式:m(a-3b)+3b-a=______________(二)平方差公式问题:下列能用平方差公式分解的是①-x2-y2②x2+(-3)2③-x2+(-3)2④x2-432、分解因式(1)-m2n2+4p2(2)m2(a-2)+2-a总结:_____________________________(三)完全平方公式问题:1、下列能用完全平方公式分解的是()A、4x2+1B、a2-2a-1C、x2+2x+4D、m2+3mn+9n2、分解因式:(1)4a2+12a+9(2)x2-3y(2x-3y)(3)(4)(x+y)2-6(x+y)+9

总结:_____________________________试一试:将4x2+1再加上一项,使它成为完全平方式,你有几种方法?※通过此练习,引导学生归纳自己对因式分解方法的理解,安排这一过程的意图是:以问题的形式学生,引导学生主动探求,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对平方差、完全平方公式特征的理解,灵活运用因式分解方法。第四个环节:试一试,用一用教师出示分解因式的应用问题:

1、计算:=_______________

2、设a-b=5,ab=2则3ab2-3a2b=_____________3、设X=2a2+3ab+b2Y=3a2+3abZ=a2+ab从X、Y、Z中任取两个进行加减运算,并把结果进行因式分解拓展延伸:△ABC的三边a、b、c有如下关系式:a2+2ab-c2-2bc=0,请你判断这个三角形的形状。※设计这一环节的意图是训练学生的综合运用知识的能力:能通过分析题目特点,然后选择恰当的分解方法。第五个环节:反思归纳,当堂达标达标测试(展现自我,体验成功!)1、mx+A可分解为m(x-y)则A表示的单项式为___________2、(a+b)2-(a-b)2=3、计算:992+198+1=_____________4、(x+1)2-9分解因式的结果是()A、(x+8)(x+1)B、(x+2)(x+4)C、(x-2)(x+4)D、(x-1)(x+8)5、x2+mx+4是完全平方式,则m的值为()A、2B、-4C、±2D、±46、分解因式:自我评价知识技能参与度综合评价ABCDABCDABCDABCD

※设置这一环节的目的,就是先让学生总结一下,从整体上把握本节课的知识结构,归纳一下分解因式的方法与规律。然后通过达标测试,来检查一下本节可掌握情况,让学生谈一下这节课的收获,既有知识的增长、能力的提高,又有成功的体验,这不正是我们复习的目的吗?15.2.2分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减.有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7计算[分析]这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8计算:[分析]这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1)(2)(3)五、课后练习1.计算:(1)(2)(3)2.计算,并求出当-1的值.六、答案:四、(1)2x(2)(3)3五、1.(1)(2)(3)2.原式=,当-1时,原式=-.13.3.1等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.[生乙]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,就可求出△ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习1、2、3.练习如图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如图,△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)习题13.3第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如图,在△ADP和△ADC中,∴△ADP≌△ADC.∴∠P=∠ACD.又∵DE∥AP,∴∠4=∠P.∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=CE.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C2.C3.已知等腰三角形的腰长比底边多2cm,并且它的周长为解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4cm、615.2.2分式的加减教学目标明确分式混合运算的顺序,熟练地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论