




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的图象与性质(一)-重难点题型【知识点1二次函数的概念】一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=【知识点2二次函数的取值范围】一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.【题型1判断二次函数的个数】【例1】(太康县期末)下列函数:①y=3−3x2;②y=2x2;③y=x(3﹣5x);④A.1个 B.2个 C.3个 D.4个【变式1-1】(涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1 B.2 C.3 D.4【变式1-2】(扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2A.2个 B.3个 C.4个 D.5个【变式1-3】(广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2【题型2利用二次函数的概念求字母的值】【例2】(沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a【变式2-1】(肃州区期末)如果函数y=(k﹣3)xk2−3k+2+kx+1是二次函数,则k的值是【变式2-2】(江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【变式2-3】(新昌县校级月考)已知函数y=(m2+m)xm(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【题型3二次函数的一般形式】【例3】(防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0 B.a=﹣1,b=0,c=3 C.a=﹣1,b=3,c=3 D.a=1,b=0,c=3【变式3-1】(遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数 B.二次项系数是﹣10 C.一次项是100 D.常数项是20000【变式3-2】(肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【变式3-3】(新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【知识点3根据实际问题列二次函数表达式的步骤】理解题意:找出实际问题中的已知量和変量(自变量,因变量),将文字或图形语言转化为数学语言;分析关系:找到已知量和变量之间的关系,列出等量关系式;列函数表达式:设出表示变量的字母,把等量关系式用含字母的式子替换,将表达式写成用自变量表示的函数的形式.【题型4根据实际问题列二次函数(销售类)】【例4】(硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x) C.y=(300+10x)(60﹣40﹣x) D.y=(300﹣10x)(60﹣40+x)【变式4-1】(朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x) B.y=(x+40)(10x﹣500) C.y=(x﹣40)[500﹣5(x﹣50)] D.y=(50+x﹣40)(500﹣5x)【变式4-2】(西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【变式4-3】(诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【题型5根据实际问题列二次函数(面积类)】【例5】(平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=−12x2+24C.y=−12x2+25x D.y=−12【变式5-1】(沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为()A.y=−12x2+26x(2≤xB.y=−12x2+50x(2≤xC.y=﹣x2+52x(2≤x<52) D.y=−12x2+27x﹣52(2≤【变式5-2】(思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【变式5-3】(东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【题型6根据实际问题列二次函数(几何类)】【例6】(西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24 B.S=25−c22【变式6-1】(翼城县期末)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3) B.S=12t2(0<tC.S=t2(0<t≤3) D.S=12t2﹣1(0<【变式6-2】(江夏区模拟)如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=1810x2+52 B.y=C.y=1810x2+2 D.y=4【变式6-3】(孝感期末)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x的函数关系是.
二次函数的图象与性质(一)-重难点题型(解析版)【知识点1二次函数的概念】一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=【知识点2二次函数的取值范围】一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.【题型1判断二次函数的个数】【例1】(太康县期末)下列函数:①y=3−3x2;②y=2x2;③y=x(3﹣5x);④A.1个 B.2个 C.3个 D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3−3x2;③y=x(3﹣5x);④y=(1+2x故选:C.【点评】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-1】(涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1 B.2 C.3 D.4【分析】根据二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析即可.【解答】解:②④是二次函数,共2个,故选:B.【点评】此题主要考查了二次函数的定义,关键是掌握y=ax2+bx+c(a、b、c是常数,a≠0)是二次函数,注意a≠0这一条件.【变式1-2】(扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2A.2个 B.3个 C.4个 D.5个【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析可得答案.【解答】解:是关于x的二次函数的有①③,故选:A.【点评】此题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-3】(广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2【分析】根据二次函数的定义可得答案.【解答】解:这六个式子中,二次函数有:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;故答案为:①②③.【点评】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.【题型2利用二次函数的概念求字母的值】【例2】(沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a【分析】根据二次函数定义可得|a2+1|=2且a+1≠0,求解即可.【解答】解:∵函数y=(a+1)x|a∴|a2+1|=2且a+1≠0,解得a=1,故答案为:1.【点评】本题考查的是二次函数的定义,二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-1】(肃州区期末)如果函数y=(k﹣3)xk2−3k+2+kx+1是二次函数,则k的值是【分析】利用二次函数定义可得k2﹣3k+2=2,且k﹣3≠0,再解出k的值即可.【解答】解:由题意得:k2﹣3k+2=2,且k﹣3≠0,解得:k=0,故答案为:0.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-2】(江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【分析】首先解方程,进而利用正比例函数、一次函数与二次函数的定义得出答案.【解答】解:m2﹣3m+2=0,则(m﹣1)(m﹣2)=0,解得:m1=1,m2=2,故m≠1且m≠2时,它为二次函数;当m=1或2时,它为一次函数,当m=1时,它为正比例函数;故答案为:1;1或2;m≠1且m≠2【点评】此题主要考查了一次函数与二次函数的定义,正确解方程是解题关键.【变式2-3】(新昌县校级月考)已知函数y=(m2+m)xm(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【分析】(1)这个式子是二次函数的条件是:m2﹣2m+2=2并且m2+m≠0;(2)这个式子是一次函数的条件是:m2﹣2m+2=1并且m2+m≠0.【解答】解:(1)依题意,得m2﹣2m+2=2,解得m=2或m=0;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=2.(2)依题意,得m2﹣2m+2=1解得m=1;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=1.【点评】本题主要考查一次函数与二次函数的定义与一般形式.【题型3二次函数的一般形式】【例3】(防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0 B.a=﹣1,b=0,c=3 C.a=﹣1,b=3,c=3 D.a=1,b=0,c=3【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项作答.【解答】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.【点评】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式3-1】(遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数 B.二次项系数是﹣10 C.一次项是100 D.常数项是20000【分析】根据形如y=ax2+bx+c是二次函数,可得答案.【解答】解:y=﹣10x2+100x+20000,A、y是x的二次函数,故A正确;B、二次项系数是﹣10,故B正确;C、一次项是100x,故C错误;D、常数项是20000,故D正确;故选:C.【点评】本题考查了二次函数的定义,化成二次函数的一般式是解题关键.【变式3-2】(肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【分析】根据二次函数的定义,可得答案.【解答】解:二次函数y=1﹣5x+3x2,则二次项系数a=3,一次项系数b=﹣5,常数项c=1,故答案为:3,﹣5,1.【点评】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.【变式3-3】(新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【分析】根据二次函数的解析式得出a,b,c的值,再代入b2﹣4ac计算,判断与0的大小即可.【解答】解:∵y=(2x﹣1)2+1,∴a=4,b=﹣4,c=2,∴b2﹣4ac=16﹣4×4×2=﹣16<0,故答案为<.【点评】本题考查了二次函数的定义以及各项系数,掌握a,b,c的确定是解题的关键.【知识点3根据实际问题列二次函数表达式的步骤】理解题意:找出实际问题中的已知量和変量(自变量,因变量),将文字或图形语言转化为数学语言;分析关系:找到已知量和变量之间的关系,列出等量关系式;列函数表达式:设出表示变量的字母,把等量关系式用含字母的式子替换,将表达式写成用自变量表示的函数的形式.【题型4根据实际问题列二次函数(销售类)】【例4】(硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x) C.y=(300+10x)(60﹣40﹣x) D.y=(300﹣10x)(60﹣40+x)【分析】由每件涨价x元,可得出销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.【解答】解:∵每涨价1元,每星期要少卖出10件,每件涨价x元,∴销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),∴每星期售出商品的利润y=(300﹣10x)(60﹣40+x).故选:D.【点评】本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y与x之间的函数关系式.【变式4-1】(朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x) B.y=(x+40)(10x﹣500) C.y=(x﹣40)[500﹣5(x﹣50)] D.y=(50+x﹣40)(500﹣5x)【分析】直接利用销量×每千克利润=总利润,得出函数关系式即可.【解答】解:设每千克涨x元,月销售利润为y元,则y与x的函数关系式为:y=(50+x﹣40)(500﹣5x).故选:D.【点评】此题主要考查了根据实际问题列函数关系式,正确表示出销量是解题关键.【变式4-2】(西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x≤140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x≤140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则y=260−x(50≤x≤80)y=420−3x(80<x<140)(2)由题意可得,W=﹣x2+300x﹣10400(50≤x≤80),W=﹣3x2+540x﹣16800(80<x<140).【点评】本题主要考查二次函数的应用,根据题意列出函数关系式是解决本题的关键.【变式4-3】(诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【分析】(1)由题意设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则x=100+60−51(2)前100件单价为P,当进货件数大于等于550件时,P=51,则当100<x<550时,P=60﹣0.02(x﹣100)=62−x50得到(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,表示出L与x的函数关系式,然后令x=500,1000即可得到对应的利润.【解答】解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则x=100+60−51根据实际出厂单价不能低于51元,因此,当一次订购量为大于等于550个时,每个零件的实际出厂价恰好降为51元.故答案为:≥550;(2)当0<x≤100时,P=60当100<x<550时,P=60﹣0.02(x﹣100)=62−当x≥550时,P=51所以P=60(0<x≤100)(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P﹣40)x=当x=500时,L=22×500−500250=因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.【点评】本小题主要考查了二次函数的应用以及分段函数的应用,注意利用自变量取值范围得出函数解析式是解题关键.【题型5根据实际问题列二次函数(面积类)】【例5】(平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=−12x2+24C.y=−12x2+25x D.y=−12【分析】根据题意表示出矩形的宽,再利用矩形面积求法得出答案.【解答】解:设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是:y=x•12(50+2﹣x)=−12x2故选:D.【点评】此题主要考查了根据实际问题列二次函数关系式,正确表示出矩形的宽是解题关键.【变式5-1】(沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为()A.y=−12x2+26x(2≤xB.y=−12x2+50x(2≤xC.y=﹣x2+52x(2≤x<52) D.y=−12x2+27x﹣52(2≤【分析】直接根据题意表示出垂直与墙饲养室的一边长,再利用矩形面积求法得出答案.【解答】解:y关于x的函数表达式为:y=12(50+2﹣x=−12x2+26x(2≤故选:A.【点评】此题主要考查了根据实际问题列二次函数关系,正确表示出另一边长是解题关键.【变式5-2】(思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【分析】根据题意分别表示出长方形的长与宽进而得出答案.【解答】解:由题意可得:S=(16+x)•40−x−16−x=(16+x)(12﹣x)=﹣x2﹣4x+192.故答案为:S=﹣x2﹣4x+192.【点评】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出矩形的长与宽是解题关键.【变式5-3】(东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【分析】先根据栅栏的总长度24表示出三间羊圈与旧墙平行的一边的总长为(24﹣4x),再根据长方形的面积公式表示即可得到s关于x的函数关系式;找到关于x的两个不等式:24﹣4x>0,x>0,解之即可求出x的取值范围.【解答】解:根据题意可知,三间羊圈与旧墙平行的一边的总长为(24﹣4x),则:s=(24﹣4x)x=﹣4x2+24x由图可知:24﹣4x>0,x>0,所以x的取值范围是0<x<6,故答案为:s=﹣4x2+24x(0<x<6).【点评】此题主要考查了结合实际问题列二次函数解析式.本题中主要涉及的知识点有:二次函数的表示方法,自变量取值范围的解法,找到关于x的不等式.【题型6根据实际问题列二次函数(几何类)】【例6】(西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24 B.S=25−c22【分析】直接利用直角三角形的性质结合完全平方公式得出S与c的关系.【解答】解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=12∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年离子交换纯净水设备项目投资价值分析报告
- 2025至2030年电脑控制全自动电热锅炉项目投资价值分析报告
- 2025至2030年电动警示道卡行业深度研究报告
- PLC步进指令编程-人行横道交通灯控制系统设计
- 2025至2030年办公用碎纸机项目投资价值分析报告
- 2025至2030年七彩豆腐机行业深度研究报告
- 2025年白板型背投一体机项目可行性研究报告
- 2025年汽车高压液压管项目可行性研究报告
- 滑坡地质灾害防治工程初步设计方案
- 2025年气弹簧密封圈项目可行性研究报告
- 《急性肺栓塞》课件
- 泰国中小学汉语课程大纲研究
- 艾滋病患者的沟通难点与技巧课件
- 广东广州天河区明珠中英文学校2022-2023学年小学六年级第二学期小升初数学试卷含答案
- 北师大版小学数学三年级下册 口算1000题(含答案)
- 冬奥会33项应急预案是
- 【杜邦分析法企业财务分析文献综述】
- 人教版二年级下册快乐读书吧课外阅读测试卷
- 配对齿轮参数全程计算(史上最全最好用的齿轮计算表格)
- 三年级数学下册《年月日的整理复习》
- 赛码在线考试财务题库
评论
0/150
提交评论