版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届安徽省屯溪第一中学高三阶段性教学质量检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.2.定义在上的函数满足,则()A.-1 B.0 C.1 D.23.函数在上的图象大致为()A. B.C. D.4.设,,,则()A. B. C. D.5.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④6.若(是虚数单位),则的值为()A.3 B.5 C. D.7.已知数列{an}满足a1=3,且aA.22n-1+1 B.22n-1-18.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.9.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.10.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.11.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.812.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④二、填空题:本题共4小题,每小题5分,共20分。13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.14.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.15.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.16.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.18.(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.19.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.20.(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.21.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.22.(10分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据特殊值及函数的单调性判断即可;【详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.2.C【解析】
推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.3.A【解析】
首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.4.A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.5.A【解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.6.D【解析】
直接利用复数的模的求法的运算法则求解即可.【详解】(是虚数单位)可得解得本题正确选项:【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.7.D【解析】试题分析:因为an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考点:数列的通项公式.8.D【解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.9.A【解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.10.C【解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.11.B【解析】
根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.12.C【解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.二、填空题:本题共4小题,每小题5分,共20分。13.360【解析】
先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.14.【解析】
设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.15.【解析】
取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.16.【解析】
根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析.【解析】
(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;(2)设直线方程为,,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,,由,,用横坐标表示出,然后计算,并代入,可得结论.【详解】(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得.∴曲线的方程为;(2)证明:设直线方程为,,则,设,由得,①,则,,②,由,,得,,整理得,,∴,代入②得:.【点睛】本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题.解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,,代入题中其他条件所求式子中化简变形.18.(1),;(2).【解析】
(1)令可求得的值,令,由得出,两式相减可推导出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求得数列的通项公式,再利用对数的运算性质可得出数列的通项公式;(2)运用等差数列的求和公式,运用数列的分组求和和裂项相消求和,化简可得.【详解】(1)当时,,所以;当时,,得,即,所以,数列是首项为,公比为的等比数列,.;(2)由(1)知数列是首项为,公差为的等差数列,.,.所以.【点睛】本题考查数列的递推式的运用,注意结合等比数列的定义和通项公式,考查数列的求和方法:分组求和法和裂项相消求和,考查运算能力,属于中档题.19.(1).(2)见解析【解析】
(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1)∵,∴当时,,解得.(2)∵,∴,∴,当且仅当,即,时,等号成立.∴.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.20.(1);(2)①82,②分布列见解析,【解析】
(1)从20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典概型的概率计算公式计算即可;(2)①平均数的估计值为各小矩形的组中值与其面积乘积的和;②要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.【详解】(1)设从20人中任取3人恰有1人成绩“优秀”为事件,则,所以,恰有1人“优秀”的概率为.(2)组别分组频数频率120.01260.03380.04440.02①,估计所有员工的平均分为82②的可能取值为0、1、2、3,随机选取1人是“优秀”的概率为,∴;;;;∴的分布列为0123∵,∴数学期望.【点睛】本题考查古典概型的概率计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桂平市九年级上学期语文期中考试卷
- 八年级上学期语文11月期中考试试卷
- 风电专业考试题库带答案
- 四年级数学(三位数乘两位数)计算题专项练习及答案
- 自建房安装水电合同范本(2篇)
- 激励作业课件教学课件
- 南京航空航天大学《电视节目摄像与编辑实践》2022-2023学年第一学期期末试卷
- 南京工业大学浦江学院《数据结构课程设计》2021-2022学年期末试卷
- 电机集团钢结构厂房三期施工组织设计
- 法律为我们护航说课稿
- 铁道工程职业生涯规划书
- 医生的职业生涯规划与发展
- 氧气充填泵操作规程
- 教育改革推进2024年的教育体系变革
- 全过程工程咨询项目实施过程中的关键重点难点问题及解决方案和合理化建议
- 急性脑血管护理查房
- 注册会计师职业道德规范
- 《吹小号的天鹅》阅读测试题
- 第12章DIC病生课件
- 幼儿园角色扮演游戏教案
- 《单片机技术应用》课程标准
评论
0/150
提交评论