第5讲圆锥曲线综合问题原卷版_第1页
第5讲圆锥曲线综合问题原卷版_第2页
第5讲圆锥曲线综合问题原卷版_第3页
第5讲圆锥曲线综合问题原卷版_第4页
第5讲圆锥曲线综合问题原卷版_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5讲圆锥曲线综合问题目录重难点题型突破突破一:求椭圆,双曲线,抛物线轨迹方程突破二:离心率问题突破三:圆锥曲线上点到定点(定直线)距离最值突破四:圆锥曲线中三角形(四边形)面积最值问题突破五:圆锥曲线中定点,定值问题突破六:圆锥曲线中定直线问题突破七:圆锥曲线中的向量问题突破一:求椭圆,双曲线,抛物线轨迹方程1.(2022·北京·海淀教师进修学校附属实验学校高二阶段练习)平面直角坐标系中,动圆T与x轴交于两点A,B,与y轴交于两点C,D,若|AB|和均为定值,则T的圆心轨迹一定是(

)A.椭圆(或圆) B.双曲线 C.抛物线 D.前三个答案都不对2.(2022·全国·高三专题练习)已知两圆,动圆与圆外切,且和圆内切,则动圆的圆心的轨迹方程为(

)A. B.C. D.3.(2022·湖北省天门外国语学校高二阶段练习)直线和上各有一点(其中点的纵坐标分别为且满足),的面积为4,则的中点的轨迹方程为(

)A. B.C. D.2·湖北·高二阶段练习)圆的半径为定长是圆上任意一点,是圆所在平面上与不重合的一个定点,线段的垂直平分线和直线相交于点,当点在圆上运动时,点的轨迹可能是(

)A.一个点 B.椭圆 C.抛物线 D.双曲线5.(多选)(2022·江苏南通·高二期中)过椭圆外一点作椭圆的两条切线,切点分别为,如果,那么点的轨迹可能是(

)A.直线 B.圆 C.椭圆 D.线段6.(2022·上海市嘉定区第一中学高二期末)已知、,,函数.若、、成等比数列,则平面上点的轨迹是______.7.(2022·福建三明·高二期中)双曲线:实轴的两个顶点为,,点为双曲线上除,外的一个动点,若,,则动点的轨迹方程是______.8.(2022·河北·任丘市第一中学高二期中)已知,B是圆C:上的任意一点,线段BF的垂直平分线交BC于点P.则动点P的轨迹方程为______.9.(2022·全国·高三专题练习)已知双曲线与直线有唯一的公共点,过点且与垂直的直线分别交轴、轴于两点,当点运动时,点的轨迹方程是___________.10.(2022·吉林·辽源市第五中学校高三期中)已知过定点的直线交曲线于A,B两点.(1)若直线的倾斜角为,求;(2)若线段的中点为,求点的轨迹方程.11.(2022·四川·雅安中学高二期中)已知抛物线经过点(a为正数),F为抛物线的焦点,且.(1)求抛物线C的标准方程;(2)若点Q为抛物线C上一动点,点M为线段的中点,求点M的轨迹方程.12.(2022·全国·高二单元测试)已知动点是曲线上任一点,动点到点的距离和到直线的距离相等,求的方程,并说明是什么曲线;13.(2022·全国·高三专题练习)已知直线和与抛物线(p>0)分别相交于A,B两点(异于原点O)与直线l:y=2x+p分别相交于P,Q两点,且.求线段AB的中点M的轨迹方程;14.(2022·全国·高三专题练习)已知点到定点的距离比它到x轴的距离大,求点P的轨迹C的方程;15.(2022·全国·高三专题练习)已知点,,为直线上的两个动点,且,动点满足,(其中为坐标原点),求动点的轨迹的方程.突破二:离心率问题1.(2022·湖南·模拟预测)若,椭圆C:与椭圆D:的离心率分别为,,则(

)A.的最小值为 B.的最小值为C.的最大值为 D.的最大值为2.(2022·河北·模拟预测)设、分别是椭圆的左、右焦点,为椭圆上的一点,若的最大值为,则椭圆的离心率的取值范围是(

)A. B.C. D.3.(2022·全国·模拟预测)已知椭圆的左、右焦点分别为,,上顶点为,直线与的另一个交点为.若,则的离心率为(

)A. B. C. D.4.(2022·湖南永州·一模)已知椭圆分别为其左、右焦点,过作直线轴交椭圆于两点,将椭圆所在的平面沿轴折成一个锐二面角,设其大小为,翻折后两点的对应点分别为,记.若,则椭圆的离心率为(

)A. B. C. D.5.(2022·四川省泸县第二中学模拟预测(文))已知椭圆的左右焦点为,若椭圆C上恰好有6个不同的点P,使得为等腰三角形,则椭圆C的离心率的取值范围是(

)A. B.C. D.6.(2022·安徽·合肥市第六中学模拟预测(理))已知斜率为的直线l与椭圆相交于A,B两点,与x轴,y轴分别交于C,D两点,若C,D恰好是线段的两个三等分点,则椭圆E的离心率e为(

)A. B. C. D.7.(2022·安徽·蚌埠二中模拟预测(理))一个底面半径为1,高为3的圆柱形容器内装有体积为的液体,当容器倾斜且其中液体体积不变时,液面与容器壁的截口曲线是椭圆,则该椭圆离心率的取值范围是(

)A. B. C. D.8.(2022·河北·模拟预测)已知、分别为椭圆的左、右焦点,为右顶点,为上顶点,若在线段上(不含端点)存在不同的两点,使得,则椭圆的离心率的取值范围为(

)A. B. C. D.9.(2022·江苏盐城·三模)已知点为椭圆:的上顶点,点,在椭圆上,满足且,若满足条件的△有且只有一个,则的离心率的取值范围为(

)A. B. C. D.10.(2022·广西广西·模拟预测(理))双曲线的左右顶点分别为,曲线上的一点关于轴的对称点为,若直线的斜率为,直线的斜率为,则当取到最小值时,双曲线离心率为()A. B.2 C.3 D.611.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线的左、右焦点分别为,为双曲线右支上的一点,若在以为直径的圆上,且,则该双曲线离心率的取值范围为(

)A. B. C. D.12.(2022·四川省宜宾市第四中学校模拟预测(文))已知是双曲线的右焦点,点,连接与渐近线交于点,,则C的离心率为(

)A. B. C. D.13.(2022·四川雅安·三模(文))已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(

)A. B. C. D.14.(2022·山西·模拟预测(理))双曲线的右顶点为在轴上,若上存在一点(异于点)使得,则的离心率的取值范围是(

)A. B. C. D.15.(2022·全国·赣州市第三中学模拟预测(理))双曲线:的左、右焦点分别为,,若在双曲线上有一点使得三角形为直角三角形,且该三角形某个锐角的正切值为,那么该双曲线离心率的最大值为(

)A. B. C. D.516.(2022·内蒙古呼和浩特·二模(理))已知点F为双曲线(,)的右焦点,若双曲线左支上存在一点P,使直线与圆相切,则双曲线离心率的取值范围是(

)A. B. C. D.17.(2022·甘肃兰州·一模(理))已知椭圆:与双曲线有公共的焦点、,为曲线、在第一象限的交点,且的面积为2,若椭圆的离心率为,双曲线的离心率为,则的最小值为(

)A.9 B. C.7 D.突破三:圆锥曲线上点到定点(定直线)距离最值1.(2022·河南郑州·三模(文))斜率为1的直线l与椭圆相交于A,B两点,则的最大值为(

)A.2 B. C. D.2.(2022·四川·成都外国语学校高二期中(理))已知,,分别为椭圆C:的左,右焦点,过垂直于长轴的直线交椭圆C于A、B两点,且;Q为C上任意一点,求的最小值为(

)A.3 B.4 C.5 D.63.(2022·江苏南通·高二期中)若点,分别在椭圆和直线上运动,则的最小值为(

)A. B. C. D.4.(2022·四川攀枝花·高二期末(理))已知双曲线的左、右焦点分别为,点在的左支上,过点作的一条渐近线的垂线,垂足为,则的最小值为(

)A. B. C. D.5.(2022·福建·莆田第六中学高二阶段练习)已知点是抛物线上的动点,点A的坐标为,则点到点A的距离与到轴的距离之和的最小值为(

)A.13 B.12 C.11 D.6.(2022·陕西·交大附中模拟预测(文))已知抛物线的焦点为,若,是抛物线上一动点,则的最小值为(

)A. B.2 C. D.37.(2022·全国·高三阶段练习)已知双曲线,过双曲线C上任意一点P作两条渐近线的垂线,垂足分别为M,N.则的最小值为______.8.(2022·江苏南通·高三阶段练习)已知是抛物线上一点,则的最小值为______.9.(2022·新疆维吾尔自治区喀什第二中学高二期末(理))已知P为抛物线y2=4x上的一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为_______10.(2022·全国·高三专题练习)已知椭圆的焦点为,,点P为椭圆上任意一点,过作的外角平分线所在直线的垂线,垂足为点Q.抛物线上有一点M,它在x轴上的射影为点H,则的最小值是________.突破四:圆锥曲线中三角形(四边形)面积最值问题1.(2022·湖北·高二阶段练习)在中,已知点与边上的中线长之和为6.记的重心的轨迹为曲线.(1)求的方程;(2)若圆,过坐标原点且与轴不重合的任意直线与圆相交于点,直线与曲线的另一个交点分别是点,求面积的最大值.2.(2022·重庆巴蜀中学高二阶段练习)定义:若点在椭圆上,并满足,则称这两点是关于的一对共轭点,或称点关于的一个共轭点为.已知点在椭圆上,是坐标原点.(1)求点关于的所有共轭点的坐标:(2)设点在上,且,求点关于的所有共轭点和点所围成封闭图形面积的最大值.3.(2022·河北·衡水市第二中学高二期中)已知抛物线的准线过椭圆的左焦点,且椭圆的一个焦点与短轴的两个端点构成一个正三角形.(1)求椭圆的方程;(2)直线交椭圆于两点,点在线段上移动,连接交椭圆于两点,过作的垂线交轴于,求面积的最小值.4.(2022·山西省运城中学校高二期中)已知椭圆,点P为E上的一动点,分别是椭圆E的左、右焦点,的周长是12,椭圆E上的点到焦点的最短距离是2.(1)求椭圆的标准方程;(2)过点的动直线l与椭圆交于P,Q两点,求面积的最大值及此时l的方程.5.(2022·辽宁·鞍山一中高二期中)已知椭圆经过点且离心率为(1)求椭圆的方程(2)过点的直线与椭圆相交于、两点,为椭圆的左焦点,记的面积为,求的取值范围.6.(2022·全国·高三专题练习)如图,椭圆和圆,已知椭圆的离心率为,直线与圆相切.(1)求椭圆的标准方程;(2)椭圆的上顶点为,是圆的一条直径,不与坐标轴重合,直线、与椭圆的另一个交点分别为、,求的面积的最大值及此时所在的直线方程.7.(2022·全国·高三专题练习)在平面直角坐标系中,已知椭圆和抛物线,椭圆的左,右焦点分别为,,且椭圆上有一点满足,抛物线的焦点为.(1)求椭圆的方程;(2)过作两条互相垂直的直线和,其中直线交椭圆于,两点,直线交抛物线于,两点,求四边形面积的最小值.8.(2022·全国·高三专题练习)在直角坐标系中,已知点,,动点满足:.(1)求动点的轨迹的方程;(2)若分别过点、,作两条平行直线,,设,与轨迹的上半部分分别交于、两点,求四边形面积的最大值.9.(2022·湖南师大附中高二阶段练习)已知双曲线,其虚轴长为,直线与曲线的左支相交于相异两点.(1)求的取值范围;(2)为坐标原点,若双曲线上存在点,使(其中),求的面积的取值范围.10.(2022·上海·复旦附中高二期中)如图,为坐标原点,椭圆的左、右焦点分别为、,离心率为;双曲线的左、右焦点分别为、,离心率为,已知,且过作的不垂直于轴的弦,为的中点,直线与交于、两点.(1)求、的方程;(2)若四边形为平行四边形,求直线的方程;(3)求四边形面积的最小值.11.(2022·江苏省邗江中学高二期中)在一张纸片上,画有一个半径为4的圆(圆心为M)和一个定点N,且,若在圆上任取一点A,将纸片折叠使得A与N重合,得到折痕BC,直线BC与直线AM交于点P.(1)若以MN所在直线为轴,MN的垂直平分线为x轴,建立如图所示的平面直角坐标系,求点P的轨迹方程;(2)在(1)中点P的轨迹上任取一点D,以D点为切点作点P的轨迹的切线,分别交直线,于S,T两点,求证:的面积为定值,并求出该定值;(3)在(1)基础上,在直线,上分别取点G,Q,当G,Q分别位于第一、二象限时,若,,求面积的取值范围.12.(2022·四川·德阳五中高二期中(文))已知椭圆:,以椭圆的右焦点为焦点的抛物线的顶点为原点,点是抛物线的准线上任意一点,过点作抛物线的两条切线、,其中、为切点,设直线,的斜率分别为,.(1)求抛物线的方程及的值;(2)求证:直线过定点,并求出这个定点的坐标;(3)若直线交椭圆于、两点,分别是、的面积,求的最小值.13.(2022·四川·成都七中高三阶段练习(理))已知点是抛物线与椭圆的公共焦点,椭圆上的点到点的最大距离为3.(1)求椭圆的方程;(2)过点作的两条切线,记切点分别为,求面积的最大值.14.(2022·贵州铜仁·高二期末(文))已知抛物线的顶点为坐标原点,焦点在坐标轴上,设是抛物线上一点.(1)求抛物线方程;(2)若抛物线的焦点在x轴上,过点M做两条直线分别交抛物线于A,B两点,若直线与的倾斜角互补,求面积的最大值.15.(2022·湖南·长沙市同升湖高级中学高三阶段练习)已知抛物线的焦点为,为抛物线上一点,.(1)求抛物线的标准方程;(2)过的两直线交抛物线于,,且的平分线平行于y轴,试判断的面积是否有最大值?若有,求出最大值;若没有,说明理由.突破五:圆锥曲线中定点,定值问题1.(2022·湖南长沙·高二阶段练习)双曲线:的离心率为,且点在双曲线上.(1)求曲线的方程;(2)动点M,N在曲线上,已知点,直线PM,PN分别与y轴相交的两点关于原点对称,点在直线MN上,,证明:存在定点,使得为定值.2.(2022·辽宁·本溪满族自治县高级中学高二阶段练习)已知双曲线的焦距为8,双曲线的左焦点到渐近线的距离为2.(1)求双曲线的方程;(2)设分别是双曲线的左、右顶点,为双曲线上任意一点(不与重合),线段的垂直平分线交直线于点,交直线于点,设点的横坐标分别为,求证:为定值.3.(2022·广东·江门市第一中学高二阶段练习)已知,,点满足,记点的轨迹为曲线.斜率为的直线过点,且与曲线相交于,两点.(1)求曲线的方程;(2)求斜率的取值范围;(3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有轴平分?如果存在,求出定点;如果不存在,请说明理由.4.(2022·福建·高二阶段练习)已知圆,点是圆外的一个定点,是圆上任意一点,线段的垂直平分线与直线相交于点.(1)求点的轨迹的方程(2)过点的直线交曲线于两点,问在轴是否存在定点使?若存在,求出定点坐标;若不存在,说明理由.5.(2022·广东·东涌中学高三期中)已知椭圆的离心率为,短轴长为10,右顶点为.(1)求椭圆的方程;(2)不经过点的直线与椭圆交于两点,以为直径的圆过点.求证:直线过定点,并求此定点坐标.6.(2022·湖南·衡阳师范学院祁东附属中学高二期中)已知椭圆:的长轴为双曲线的实轴,且椭圆过点.(1)求椭圆的标准方程:(2)设点,是椭圆上异于点的两个不同的点,直线与的斜率均存在,分别记为,,若,试问直线是否经过定点,若经过,求出定点坐标;若不经过,请说明理由.7.(2022·江苏·南京市建邺高级中学高二阶段练习)知椭圆E:的左右焦点分别为,,过且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为(1)求椭圆E的方程;(2)如图,下顶点为A,过点作一条与y轴不重合的直线.该直线交椭圆E于C,D两点.直线AD,AC分别交x轴于点H,求证:与的面积之积为定值,并求出该定值.8.(2022·四川·简阳市阳安中学高二阶段练习(理))已知以坐标原点为圆心的圆与抛物线:相交于不同的两点,与抛物线的准线相交于不同的两点,且.(1)求抛物线的方程;(2)若不经过坐标原点的直线与抛物线相交于不同的两点、,且满足,证明直线过定点,并求出点的坐标.9.(2022·福建·莆田第六中学高二阶段练习)若位于轴右侧的动点到的距离比它到轴距离大.(1)求动点的轨迹方程D.(2)过轨迹D上一点作倾斜角互补的两条直线,交轨迹于两点,求证:直线的斜率是定值.10.(2022·四川·成都七中高二期中(文))设抛物线​的准线为l,A、B为抛物线上两动点,,​为垂足,已知​有最小值​,其中​的坐标为​.(1)求抛物线的方程;(2)当(​,且)时,是否存在一定点​满足​为定值?若存在,求出​的坐标和该定值;若不存在,请说明理由.11.(2022·河南安阳·高二期中)已知抛物线:()的焦点为,点在上,且.(1)求的方程;(2)若不过点的直线与相交于两点,且直线,的斜率之积为1,证明:直线过定点.突破六:圆锥曲线中定直线问题1.(2022·江苏南京·高二期中)已知圆A:,T是圆A上一动点,BT的中垂线与AT交于点Q,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)过点(0,2)的直线l交曲线C于M,N两点,记点P(0,).问:是否存在直线l,满足PM=PN?如果存在,求出直线l的方程;如果不存在,请说明理由.2.(2022·山东聊城·三模)已知椭圆C:的离心率为,左顶点为,左焦点为,上顶点为,下顶点为,M为C上一动点,面积的最大值为.(1)求椭圆C的方程;(2)过的直线l交椭圆C于D,E两点(异于点,),直线,相交于点Q,证明:点Q在一条平行于x轴的直线上.3.(2022·全国·高三专题练习)已知椭圆的离心率,长轴的左、右端点分别为(1)求椭圆的方程;(2)设直线与椭圆交于两点,直线与交于点,试问:当变化时,点是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.4.(2022·广东·肇庆市第一中学高三阶段练习)已知双曲线的离心率是2,直线过双曲线的右焦点,且与双曲线的右支交于两点.当直线垂直于轴时,.(1)求双曲线的标准方程.(2)记双曲线的左、右顶点分别是,直线与交于点,试问点是否恒在某直线上?若是,求出该直线方程;若不是,请说明理由.5.(2022·海南·海口中学高三开学考试)已知双曲线的一条渐近线方程为,一个焦点到该渐近线的距离为.(1)求C的方程;(2)设A,B是直线上关于x轴对称的两点,直线与C交于M,N两点,证明:直线AM与BN的交点在定直线上.6.(2022·全国·高三专题练习)已知抛物线和圆,抛物线的焦点为.(1)求的圆心到的准线的距离;(2)若点在抛物线上,且满足,过点作圆的两条切线,记切点为,求四边形的面积的取值范围;(3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是“直线的方程为”7.(2022·全国·高三专题练习)曲线C上任一点到定点的距离等于它到定直线的距离.(1)求曲线C的方程;(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论