版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MUMBAISILICONVALLEYBENGALURUSINGAPORENEWDELHINEWYORKGIFTCITY
Research
UnmaskingDeepfakes
Legal,RegulatoryandEthicalConsiderations
October2024
©NishithDesaiAssociates2024
Research
UnmaskingDeepfakes
Legal,RegulatoryandEthicalConsiderations
October2024
DMSCode:100042.1
©NishithDesaiAssociates2024
Rankedasthe‘MostInnovativeIndianLawFirm’intheprestigiousFTInnovativeLawyersAsiaPacificAwardsformultipleyears.Alsorankedamongstthe‘MostInnovativeAsiaPacificLawFirm’intheseeliteFinancialTimesInnovationrankings.
llwwL
Aegermartet
回woruDX
BUSINESSTODAY
equalipi
©NishithDesaiAssociates2024
UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations
Disclaimer
ThisreportisacopyrightofNishithDesaiAssociates.Noreadershouldactonthebasisofanystatementcontainedhereinwithoutseekingprofessionaladvice.Theauthorsandthefirmexpresslydisclaimallandanyliabilitytoanypersonwhohasreadthisreport,orotherwise,inrespectofanything,andofconsequencesofanythingdone,oromittedtobedonebyanysuchpersoninrelianceuponthecontentsofthisreport.
Contact
Foranyhelporassistancepleaseemailuson
concierge@
orvisitusat
.
Acknowledgements
RhythmVijayvargiya
rhythm.vijayvargiya@
PurushothamKittane
purushotham.kittane@
VaibhavParikh
vaibhav.parikh@
WewouldliketothankSauravKumar,HiranyaBhandarkar,andNishkaKapoorfortheircontributiontotheresearchpaper.
©NishithDesaiAssociates2024Provideduponrequestonly
Contents
Introduction1
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies3
A.Meaning3
B.TypesofDeepfakes4
C.TechnologiesbehindDeepfakes7
10
TheImpactofDeepfakes
A.UseCasesofDeepfakeTechnology10
B.MisusesofDeepfakeTechnology12
16
LegalandRegulatoryImplications
A.InternationalRegulatoryInterventions16
B.IndianLegalandRegulatoryImplications21
38
WayForward
©NishithDesaiAssociates2024Provideduponrequestonly
Introduction
Weareintheeraofartificialintelligence(“AI”),anditissafetosaythattoday,thespeedoftechnologicalbreakthroughsisdirectlyproportionaltothespeedoftransmissionofinformationaswellasmisinformation.Contentalterationormanipulationisanage-oldconcept,1buttheeasyaccessibilityofvarioustoolshascontributedtothegrowthrateofonlineorchestratedcontentincreasingby400%everyyear.2
Atpresent,deepfakesareoneofthemostadvancedformsofsyntheticallygeneratedmediaanditispredictedthattheycouldaccountforupto90%oftheonlineavailablecontentintheupcomingyears.3
Oneofthefirsttechnologiesthatproduceddeepfake-likeresultswastheVideoRewriteProgramin1997,4whichautomatedfacialreanimationinvideos.Basedonasimilarconcept,theGenerativeAdversarialNetwork5(“GAN”)wasintroducedin2014,whichwasfurtherimprovisedbyNvidia6in2017toproducegoodqualityforgedimages.
WiththeGANalgorithmsslowlycatchingtraction,laterin2017,theterm“deepfakes”wascoinedwhenanunidentifieduseronthesocialmediaplatformReddithaddevelopedanalgorithm,7thattheuserusedtotransposecelebrityfacesontopornographiccontent.8Thelikenessofthecelebritieswassuperimposedinthepornographiccontenttotheextentthatitappearedtobetrue.Owingtothenatureofthecontentbeingshared,itinstantlybecameviralandwidespread.Theunidentifieduserusedtogowiththeusernamedeepfakes,andhence,thetechnologycametobecommonlyreferredtoasdeepfaketechnology.
Essentially,deepfakesreferto“fake”contentthatiscreatedusing“deeplearning”technology.9Apartfromthisoversimplifiedmeaningofdeepfakes,ithasalsobeendefinedbytheOxfordUniversityPress10as:“avideoofapersoninwhichtheirfaceorbodyhasbeendigitallyalteredsothattheyappeartobesomeoneelse,typicallyusedmaliciouslyortospreadfalseinformation.”WiththeadvancesinAI-synthesizedtechniques,deepfakesarenowalsocapableofcreatinghighlyrealisticallysoundedvoices.11
Today,thetechnologyiswidelyknownforcreatingrealistic-lookingimagesandvideosofpeopleandobjectsthatmayormaynotexist.Aboutninety-fivepercentofthedeepfakecontentwasintheformofnon-consensualporntillDecember2018,andRanaAyyub’scase12wasoneofthebiggestexamplesinthedeepfakehistorytodepictthedepthofrevengepornplottingthroughthistechnology.
1Datamanipulationhasbeeninpracticesincethe1890s;Pleasesee:
/collections/spanish-american-war-in-motion-pictures/
articles-and-essays/the-motion-picture-camera-goes-to-war/remember-the-maine-the-beginnings-of-war/,
(lastaccessedOctober10,2024).
2Pleasesee:
/en/news-release/2022/10/27/2542944/0/en/Deepfake-content-on-the-internet-is-growing-at
-the-rate-of-a-whopping-400-year-on-year.html
,(lastaccessedOctober10,2024).
3Pleasesee:
/2023/01/22/business/media/deepfake-regulation-difficulty.html
,(lastaccessedOctober10,2024).
4Pleasesee:
/videorewrite/VideoRewrite.pdf,
(lastaccessedOctober10,2024).
5Pleasesee:
/pdf/1406.2661.pdf,
(lastaccessedOctober10,2024).
6Pleasesee:
/blog/generating-photorealistic-fake-celebrities-with-artificial-intelligence/,
(lastaccessedOctober10,2024).
7TheReddituser’ssoftwarewascalledFakeApp,andwasusedbyBuzzFeedin2018tocreateadeepfakevideoofBarackObamaaddressingthisissue.Pleasesee:
/craigsilverman/obama-jordan-peele-deepfake-video-debunk-buzzfeed
.
8Pleasesee:
/volumes/Vol97No22/7Vol97No22.pdf,
(lastaccessedOctober10,2024).
9Pleasesee:
https://iimk.ac.in/uploads/faculty/CAIS_20220810062848.pdf,
(lastaccessedOctober10,2024).
10Pleasesee:
/google-dictionary-en/,
(lastaccessedOctober10,2024).
11Pleasesee:
/pdf/2005.13770.pdf,
(lastaccessedOctober10,2024).
12Pleasesee:
/archive/in/entry/deepfake-porn_in_5c1201cfe4b0508b213746bd
,(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly1
Introduction
However,overtime,inaround2019,theusecasesofdeepfaketechnologystartedtocomeintothelimelighttoo.13BigTechorganizationslikeMicrosoft,14Google,15andSamsung16adoptedGANforcontentgeneration.Currently,theusesofdeepfaketechnologycanbeseeninthemedical,17entertainment,18marketing,19andfashion,20industriesamongothers;settingsomenoteworthyexamplesanddepictingthatthetechnologycanhaveanarrayofbeneficialusestoo.
Irrespectiveoftheeventsthatbroughtdeepfaketechnologyintothefocusofattention,thepossibilitiesthatarisewithitsuseareendless.Additionally,thereasonforitssignificantbreakthroughishowconvincingthesemediaemployingdeepfaketechnologyaretotheperceptiblehumanmind,andastimeprogresses,thesealteredmediaarebecomingincreasinglyclosertoreality.21
Contentmanipulationhasnowbecomemainstreamandeasilyaccessible,withthequalityofforgedcontentbeingsohighthatitbecomesimpossibletofilteroutwithabareeye.However,itisimportanttoacknowledgethatwiththequalityofthisfabricatedcontentrising,theimplicationsandinturnliabilitieswouldrisetoo.
Inthispaper,wehavesystematicallyexaminedthetypesandunderlyingtechnologiesbehinddeepfakes,followedbytheuseandmisusecasesofsuchtechnology.Additionally,wehavediscussedthelegal,regulatory,andethicalimplicationsofdeepfakesinIndiaandotherjurisdictions.
13Pleasesee:
/impressive-applications-of-generative-adversarial-networks/,
(lastaccessedOctober10,2024).
14Pleasesee:
/microsoft-has-made-their-own-ai-powered-image-generator-and-its-pretty-meh/,
(lastaccessedOctober10,2024).
15Pleasesee:
/2020/11/using-gans-to-create-fantastical.html
,(lastaccessedOctober10,2024).
16Pleasesee:
/global/behind-the-snapshot-how-the-galaxy-s21s-ai-improves-your-photos-in-the-blink-of-an-eye-sin-
gle-take
,(lastaccessedOctober10,2024).
17Pleasesee:
/reader/sd/pii/S0300571222002676?token=5DA9F8AD14B7D8634EBC69B7FCBB9E0414B10BAEF3C33865
833CC51F36FD35144A6558CDA050505AE667AC4F6C17900C&originRegion=eu-west-1&originCreation=20230225021628
,
(lastaccessedOctober10,2024).
18Pleasesee:
/channel/UCi38HMIvRpGgMJ0Tlm1WYdw
,(lastaccessedOctober10,2024).
19Pleasesee:
/news/tech/cadburys-new-ai-tool-will-let-you-create-free-ad-with-shah-rukh-khans-face-and-
voice-4358408.html
,(lastaccessedOctober10,2024).
20Pleasesee:
/sites/katiebaron/2019/07/29/digital-doubles-the-deepfake-tech-nourishing-new-wave-retail/?sh=2d473f-
bc4cc7,
(lastaccessedOctober10,2024).
21Pleasesee:
/publication/338144721_Deepfakes_Trick_or_treat
,(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly2
UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
A.Meaning
Deepfakesaretypicallyunderstoodtobemanipulatedmedia.1However,tojustsaythatdeepfakesaresynthesizedmediacreatedbyusingidentity-swappingalgorithmswouldnotdojusticetothedepthofthisconcept.Inaworldwhereeveryimageorvideoontheinternetmaybealteredtosomedegreeusingdeeplearning,itbecomesdifficulttoagreeonacommondefinitionofdeepfakessincethelinewhereapictureorvideobecomes“manipulated”or“fake”isblurred.
Nevertheless,theusageofdeeplearningtechnologytoproducefakecontentcontributedtowardstheportmanteau–Deepfakes.2Eventhoughthereisnogloballyagreedupondefinitionfordeepfakes,theycametobe
understoodconventionallyas“fakeimagescreatedbyanadvancedimageediting,deeplearningsoftware.”3
Tounderstandthenatureofdeepfakes,itiscrucialtoestablishthatdeeplearningisamachinelearningtoolthatformsthebasisofpowerfulalgorithms.Thesealgorithmsaredesignedtouseenormousvolumesofdatatolearntoperformspecifictasks.Simplyput,deeplearningisatypeofAI,anditusesartificialneuralnetworkstomimicthelearningprocessofthehumanbrain.4Deeplearningisafundamentalelementofthedeepfakephenomenon,asthealgorithmsfeedontotheexistingandavailabledata5tocreatefakeimagesandvideosthathumanscannotdistinguishfromauthenticones.6
Thereisnodistinguishabledivisionthatseparates‘acceptable’formsofaugmentationorspecialeffectstomediafromthosewhichmaytypicallybeseenasmanipulated.Although,themanipulatedcontentthatisnotgeneratedusingAIordeeplearningtechnologyusuallybearsalowerqualityandiseasiertopointoutfromthegenuinecontent.Theserelativelypoorlyengineeredphotosandvideosareusuallyreferredtoascheapfakesorshallowfakes.7
AJuly2021studyundertakenfortheEuropeanParliamenthasdefineddeepfakesas“manipulatedorsyntheticaudioorvisualmediathatseemauthentic,andwhichfeatureapersonthatappearstosayordosomethingtheyhaveneversaidordone,producedusingartificialintelligencetechniques,includingmachinelearninganddeeplearning.”8
1Pleasesee:
/news/2020/01/enforcing-against-manipulated-media/,
(lastaccessedOctober10,2024).
2Pleasesee:
/65354450/IRJET_V7I1265-libre.pdf?1609941112=&response-content-disposition=inline%
3B+filename%3DIRJET_A_Brief_Study_on_Deepfakes.pdf&Expires=1677852603&Signature=Ybf6GhM91ZkpLWPUmRAl6WrpJBbQXXFkHxuLIP
wsmhlwde99WwNaj-i64CUtQLrfiJ2aZLYjXMWAa75rcTHqXp3lClYx5yJAPx-q9od8qTUwTeV2VPlViuq7SeHMDzUzL40mWtmQW7VuPlt0MUkiq3D
LlBz0xhCaVqqoc5d2OiCStVaufRq5Jh9gCulojTMAzl15b9uLPTVeMcZFtadesEcjyxhJMSTOX0MiZStQosOp81sy91AFmeUTzBMOQbVk-r-QZiEBx
A2frryvmMHJrGzg6kpZ1ssHncdwam-P7j1SaeYXU-BLG0PEYlYGjryJgxIrcxUFIYWa6f5R9XdYcA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
,
(lastaccessedOctober10,2024).
3Pleasesee:
/cgi/viewcontent.cgi?article=1742&context=honors-theses
,(lastaccessedOctober10,2024).
4Pleasesee:
/in-en/topics/deep-learning
,(lastaccessedOctober10,2024).
5Pleasesee:
/nl-en/blogs/insights/deepfakes-how-prepare-your-organization
,(lastaccessedOctober10,2024).
6Pleasesee:
/pdf/1909.11573.pdf,
(lastaccessedOctober10,2024).
7Pleasesee:
/wp-content/uploads/2019/09/DS_Deepfakes_Cheap_FakesFinal-1-1.pdf
;:
https://www.lexisnexis.co.uk/legal/
guidance/deepfakes#:~:text=A%20deepfake%20is%20a%20form,a%20realistic%20but%20fake%20video,(lastaccessedOctober10,2024).
8Pleasesee:
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690039/EPRS_STU(2021)690039_EN.pdf,
(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly3
UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
Therehasbeenaplethoraofattemptstodefinedeepfakes,anditisanarduoustasktofindanagreeabledefinitionforthem.Although,thefollowingelementsseemtobelargelyacceptedasbeingfundamentallypartofwhatdeepfakesare:
a.Alterationofmediausingdeeplearningtechnologicaltools;
b.Alteredmediathatinvolvestheassumptionofanidentityofaperson;and
c.Anuntruealteredmediadepictedastruetothecasualviewer.
B.TypesofDeepfakes
Mostdeepfakevideosinvolvefacialmanipulation,whereaface,faces,orpartsthereofaremanipulatedandthensuperimposedorinsertedonanotherfaceorpartthereof.9Themanipulationmaybestatic,asinthecaseofanimage,ordynamicasinavideo.Thedeepfaketechnologymaybeusedtocreatedoctoredcontentthroughreenactment,replacement,editing,andaudioorvisualsynthesis.10
Reenactment11
Reenactment,commonlyunderstoodasexpressionswap,isessentiallywheretheimagesarefedintothealgorithmtodrivetheexpressionsofapersonandcreateadeepfake.Areenactmentdeepfakeallowsthecreatortoimpersonateanindividual’sappearanceandinturn,controlwhattheyappeartosayordo.Thisisoneofthemostdangeroustypesofdeepfakes,astheycanbeusedtoperformactsofdefamation,spreadmisinformation,andtamperwithevidence.
FacialReenactment
GazeMouthExpressionPoseComplete
Source:Medium12
9Pleasesee:
https://iimk.ac.in/uploads/faculty/CAIS_20220810062848.pdf,
(lastaccessedOctober10,2024).
10Pleasesee:
/pdf/2004.11138.pdf,
(lastaccessedOctober10,2024).
11Pleasesee:
.au/cgi/viewcontent.cgi?article=2530&context=theses_hons
,(lastaccessedOctober10,2024).
12Pleasesee:
/voxel51/have-deepfakes-influenced-the-2020-election-c0fc890aca0f
.,(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly4
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
Replacement13
Replacement,commonlyunderstoodasfaceoridentityswap,iswhentheimagesarefedintothealgorithmtoreplacethefaceofonepersoninanimageorvideowiththatofanotherperson.Thismethodposesdangertoo,asitcanbeusedfortheproductionofrevengepornographicvideos,cheating,andfinancialfraud.Someoftheusecasesofthismethodincludegeneratingmemesorsatiricalcontent,orfaceswappingforanonymiza-tionofone’sidentityinpubliccontent.
FaceReplacement
TransferSwap
Source:InfoQ14
Editing15
Througheditingorattributealteration,aportionofthefaceismanipulatedtoachieveadifferentresult.Mediaretouchingdonethroughthismethodcomprisesalteringfacialfeaturessuchasgender,age,ethnicity,etc.Thismethodismisusedwidely,forinstance,fortheremovalofavictim’sclothesforhumiliationorentertainment.Atthesametime,thismethodofcreatingdeepfakesisusedforentertainmentandeasyeditingpurposestoo.
FaceEditing
HairArticleAgeBeautyEthnicity
Source:InfoQ16
13Pleasesee:
/blog/how-easy-is-it-to-make-and-detect-a-deepfake/,
(lastaccessedOctober10,2024).
14Pleasesee:
/article/u7jtw13waskch2mpl918
.
15Pleasesee:
/2313-433X/9/1/18
,(lastaccessedOctober10,2024).
16Pleasesee:
/article/u7jtw13waskch2mpl918
,(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly5
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
VisualSynthesis17
Visualsynthesisallowsthecreationofadeepfakewithnotargetimagesorvideosasabasis.Entirefacesynthesisisusuallybasedondatasetsthatareeasilyavailableonline.Thismethodallowsthecreationofunrealpersonasonlineandmaybeusefulfornon-personalcommunicationwhileatthesametimeholdingthepotentialforfraudorthespreadofmisinformation.Fore.g.,thismethodalsobeusedtogeneratenon-existingfaceimagesforthecharactersinmoviesandgames.
EntireFaceSynthesis
FakeReal
Source:Medium18
AudioSynthesis19
Incasesofaudiosynthesis,anaudioclipofapersonspeaking,oreventhespeechinwritingisobtained,andanaudioclipisproducedoutofthespeechortextinthetoneandstyleofachosentarget,therebygivingtheimpressionthatthetargetpersonisspeaking.Thismethodposesathreatasitmakesphone-callfraudsverystraightforwardforthescammers.Although,speechsynthesishasalsobeenrelieduponinthemedicalindustrytohelppatientswithimpairment.
DataCollection
SpeakerEncoding
ModelTrainingTestingand
Evaluation
>
DistributionandUse
AudioData
Preprocessing
SpeechSynthesisandoptimization
Source:BotTalk20
17Pleasesee:
/pdf/1912.04958.pdf,
(lastaccessedOctober10,2024).
18Pleasesee:
/deepfakes-production-detection-using-various-deep-learning-methodolo-
gies-3221e6002dd2
,(lastaccessedOctober10,2024).
19Pleasesee:
/ftp/arxiv/papers/2111/2111.14203.pdf,
(lastaccessedOctober10,2024).
20Pleasesee:
https://bottalk.io/learn-with-bottalk/everything-about-deepfake-voice/,
(lastaccessedOctober10,2024).
©NishithDesaiAssociates2024Provideduponrequestonly6
UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
C.TechnologiesbehindDeepfakes
MethodsofCreation21
Thereexistsanarrayofmachinelearningtechniquesandalgorithmswhichcanbeusedtocreatedeepfakes,andthequalityoftheresultisdependentnotonlyonthequalityofthealgorithmbutalsoonthequalityandquantityofdatausedtotrainthealgorithm.Itisnocoincidencethatthemajorityofdeepfakevideosontheinternetinvolvefamouspeople,astheyhavelargeamountsofpublicimagesandvideosavailablethatcanbeusedtotrainthealgorithm.
Deepfakesareusuallycreatedusingvariationsorcombinationsofgenerativenetworksandencoder-decodernetworks.DifferentkindsofGenerativeNeuralNetwork(“GNN”)architecturesareusedforthegenerationofartificiallyorchestratedcontent.Aneuralnetworkisessentiallyanalgorithmicmodelwhichgeneratescontentbasedonaninput.BelowarethedifferentGNNsusedforthecreationofdeepfakes.
I.Encoder-DecoderNetworks(“EDN”)
AnEDNismadeupoftwoormorealgorithmsthatcompressanddecompresspictures.Deepfakesarecreatedusingautoencoders,whichrecreateasubjectbasedontheinformationrelativetothedataprovidedtoit.Thesubjectsusedtocreatethedeepfakemusthaveasmanysimilaritiesaspossibletotheintendedoutputsothatthesharedencodercanidentifymeaningfulfeaturesandtransferthemappropriately.
Thequantityandqualityofdatapresentedtothealgorithmduringtheprocessisdirectlyproportionatetotheresult’squality.Autoencoderstrainedonmillionsofphotosofafacefromvariousanglesandunderavarietyoflightingconditionswillperformfarbetterandproducemorerealisticresultsthanencoderstrainedonafewhundredimageswithlittlevariationacrossthem.
II.ConvolutionalNeuralNetwork(“CNN”)
ACNNlearnspatternhierarchiesindataandishenceaveryefficienttoolfordealingwithpictures.
CNNhastheuniquecapacitytoextractfeaturesfromimages,whichmaythenbeutilizedinavariety
ofapplications.ACNNextractsalayerofcharacteristicsfromadatasetandappliesittoaninputimage;bycombiningnumerouslayersofthesecharacteristics,itispossibletoconstructrealistic-lookingdeepfakes.
III.GenerativeAdversarialNetworks(“GAN”)
GANwasfirstintroducedin2014andhassincebecomeoneofthemostpopulartoolsforcreatingdeepfakes.GANsaremadeupoftwoneuralnetworksthatcompetewithoneanother.Theycan“learnfromtheirblunders”anddetectpatternsinenormousvolumesofvisualdata.Severallicensedpictureandvideoeditingsoftware,augmentedandvirtualrealityapplications,andcutting-edgemedicalimagingtoolsusethem.22TherearetwopopularimagetranslationframeworksthatusethefundamentalprinciplesofGANsinthecreationofdeepfakes:(i)image-to-imagetranslationwhichisoftenrelieduponforgeneratinghigh-resolution
21Pleasesee:
/pdf/2004.11138.pdf,
(lastaccessedOctober10,2024).
22Pleasesee:
/impressive-applications-of-generative-adversarial-networks/,
(lastaccessedOctober10,2024).©NishithDesaiAssociates2024Provideduponrequestonly7
DimensionsofDeepfakes:Meaning,TypesandtheTechnologies
imagerywithbetterfidelity,and(ii)CycleGANwhichisacombinationoftwoGANsandcanbeusedforobjecttransfigurationandstyletransfer.
IV.RecurrentNeuralNetworks(“RNN”)
AnRNNisaformofneuralnetworkthatremembersitsinternalstateafterprocessingadatasetandcansubsequentlybeusedtoprocessfurtherdatasets.RNNsarefrequentlyemployedindeepfakegenerationtomodifyaudioand,insomecases,video.
Withtheusageoftheabove-discussedunderlyingtechnologies,multipleconsumer-gradewebsitesandapplicationshavealsobeencreatedthatallowuserstoproducedeepfakes.
SomeoftheseincludeFakeApp,FaceSwap,DeepFaceLab,DFaker,FaceSwap-GAN,DeepFake-tf,ZAO,Auto-FaceSwap,FSGAN,FewShotFace,andStarGAN.23
Further,videoeditingsoftwarelikeAdobeAfterEffectsorWondershareFilmoracanbeusedtocreatecheapfakes,ifnotdeepfakes.Mostoftheseapplicationsarepubliclyavailableandcanproducealarge
rangeofmanipulateddata–dependingonthequalityoftheimagesfedandtheplatformused.
MethodsofDetection
Deepfakesarearesultofsuperimpositionwhichbecomespossiblethroughtheextensivecombinationsofdatasetsandthetechnologiesdiscussedintheprevioussection.Sincethealgorithmsputtouseforthemanipulationareonly“editing”pre-existingdata,gapscontinuetoremainintheresults.Minutefeatureslikeeyemovements,lighting,andshadowsoftencreatediscrepanciesthatallowfordeepfakedetection.24Thereexistdifferentsetsoftoolsforthedetectionofdeepfakesinimages,andinvideos.25Forinstance,thedetectionofdeepfakeimagesmaybedonethroughthedeploymentofthefollowingmethods:
DetectionofGAN-generatedimagesmaybedonethroughanimagepreprocessingstepanddifferentiatingtheswappedimagesfromthegenuine.26
Atwo-phaseddeeplearningmethodmaybeimplemented,inwhichthefirstphaseusesafeature
extractorthroughthecommonfakefeaturenetworkandthesecondphasecategorizesthefakeandrealimagesbasedontheresultsofthefirst.27
ACNNmodelmaybeusedtoidentifytheimageswherethefacialexpressionsaremaliciouslytamperedwith.
Simila
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业病防治分级护理制度方案
- 科研机构创新管理“一线工作法”方案
- 城市公共交通安全提升三年行动方案
- 联谊活动方案6篇
- 交通枢纽广告牌施工方案
- 停车场护栏管理方案
- 住宅独立基础施工方案
- 小学美术评期末考核方案
- 高压电机安全技术培训方案
- 在线教育平台教材循环应用方案
- 行业协会重大活动备案报告制度
- 北京市海淀区2024学年七年级上学期语文期中试卷【含参考答案】
- 2024年新人教版七年级上册数学教学课件 5.2 解一元一次方程 第4课时 利用去分母解一元一次方程
- Unit 4 My Favourite Subject教学设计2024-2025学年人教版(2024)英语七年级上册
- 2024新信息科技三年级第四单元:创作数字作品大单元整体教学设计
- 第9课《这些是大家的》(课件)-部编版道德与法治二年级上册
- 2024年四川省南充市从“五方面人员”中选拔乡镇领导班子成员201人历年高频500题难、易错点模拟试题附带答案详解
- 2024年母婴护理考试竞赛试题
- 人工智能算力中心项目可行性研究报告写作模板-申批备案
- 2024-2030年中国空压机(空气压缩机)行业运营现状与可持续发展建议研究报告
- 2024-2030年中国机器翻译行业市场发展趋势与前景展望战略分析报告
评论
0/150
提交评论