NishithDesai-揭开Deepfakes的面纱-法律、监管和伦理考虑 Unmasking Deepfakes -Legal,Regulatory and Ethical Considerations 2024_第1页
NishithDesai-揭开Deepfakes的面纱-法律、监管和伦理考虑 Unmasking Deepfakes -Legal,Regulatory and Ethical Considerations 2024_第2页
NishithDesai-揭开Deepfakes的面纱-法律、监管和伦理考虑 Unmasking Deepfakes -Legal,Regulatory and Ethical Considerations 2024_第3页
NishithDesai-揭开Deepfakes的面纱-法律、监管和伦理考虑 Unmasking Deepfakes -Legal,Regulatory and Ethical Considerations 2024_第4页
NishithDesai-揭开Deepfakes的面纱-法律、监管和伦理考虑 Unmasking Deepfakes -Legal,Regulatory and Ethical Considerations 2024_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MUMBAISILICONVALLEYBENGALURUSINGAPORENEWDELHINEWYORKGIFTCITY

Research

UnmaskingDeepfakes

Legal,RegulatoryandEthicalConsiderations

October2024

©NishithDesaiAssociates2024

Research

UnmaskingDeepfakes

Legal,RegulatoryandEthicalConsiderations

October2024

DMSCode:100042.1

©NishithDesaiAssociates2024

Rankedasthe‘MostInnovativeIndianLawFirm’intheprestigiousFTInnovativeLawyersAsiaPacificAwardsformultipleyears.Alsorankedamongstthe‘MostInnovativeAsiaPacificLawFirm’intheseeliteFinancialTimesInnovationrankings.

llwwL

Aegermartet

回woruDX

BUSINESSTODAY

equalipi

©NishithDesaiAssociates2024

UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations

Disclaimer

ThisreportisacopyrightofNishithDesaiAssociates.Noreadershouldactonthebasisofanystatementcontainedhereinwithoutseekingprofessionaladvice.Theauthorsandthefirmexpresslydisclaimallandanyliabilitytoanypersonwhohasreadthisreport,orotherwise,inrespectofanything,andofconsequencesofanythingdone,oromittedtobedonebyanysuchpersoninrelianceuponthecontentsofthisreport.

Contact

Foranyhelporassistancepleaseemailuson

concierge@

orvisitusat

.

Acknowledgements

RhythmVijayvargiya

rhythm.vijayvargiya@

PurushothamKittane

purushotham.kittane@

VaibhavParikh

vaibhav.parikh@

WewouldliketothankSauravKumar,HiranyaBhandarkar,andNishkaKapoorfortheircontributiontotheresearchpaper.

©NishithDesaiAssociates2024Provideduponrequestonly

Contents

Introduction1

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies3

A.Meaning3

B.TypesofDeepfakes4

C.TechnologiesbehindDeepfakes7

10

TheImpactofDeepfakes

A.UseCasesofDeepfakeTechnology10

B.MisusesofDeepfakeTechnology12

16

LegalandRegulatoryImplications

A.InternationalRegulatoryInterventions16

B.IndianLegalandRegulatoryImplications21

38

WayForward

©NishithDesaiAssociates2024Provideduponrequestonly

Introduction

Weareintheeraofartificialintelligence(“AI”),anditissafetosaythattoday,thespeedoftechnologicalbreakthroughsisdirectlyproportionaltothespeedoftransmissionofinformationaswellasmisinformation.Contentalterationormanipulationisanage-oldconcept,1buttheeasyaccessibilityofvarioustoolshascontributedtothegrowthrateofonlineorchestratedcontentincreasingby400%everyyear.2

Atpresent,deepfakesareoneofthemostadvancedformsofsyntheticallygeneratedmediaanditispredictedthattheycouldaccountforupto90%oftheonlineavailablecontentintheupcomingyears.3

Oneofthefirsttechnologiesthatproduceddeepfake-likeresultswastheVideoRewriteProgramin1997,4whichautomatedfacialreanimationinvideos.Basedonasimilarconcept,theGenerativeAdversarialNetwork5(“GAN”)wasintroducedin2014,whichwasfurtherimprovisedbyNvidia6in2017toproducegoodqualityforgedimages.

WiththeGANalgorithmsslowlycatchingtraction,laterin2017,theterm“deepfakes”wascoinedwhenanunidentifieduseronthesocialmediaplatformReddithaddevelopedanalgorithm,7thattheuserusedtotransposecelebrityfacesontopornographiccontent.8Thelikenessofthecelebritieswassuperimposedinthepornographiccontenttotheextentthatitappearedtobetrue.Owingtothenatureofthecontentbeingshared,itinstantlybecameviralandwidespread.Theunidentifieduserusedtogowiththeusernamedeepfakes,andhence,thetechnologycametobecommonlyreferredtoasdeepfaketechnology.

Essentially,deepfakesreferto“fake”contentthatiscreatedusing“deeplearning”technology.9Apartfromthisoversimplifiedmeaningofdeepfakes,ithasalsobeendefinedbytheOxfordUniversityPress10as:“avideoofapersoninwhichtheirfaceorbodyhasbeendigitallyalteredsothattheyappeartobesomeoneelse,typicallyusedmaliciouslyortospreadfalseinformation.”WiththeadvancesinAI-synthesizedtechniques,deepfakesarenowalsocapableofcreatinghighlyrealisticallysoundedvoices.11

Today,thetechnologyiswidelyknownforcreatingrealistic-lookingimagesandvideosofpeopleandobjectsthatmayormaynotexist.Aboutninety-fivepercentofthedeepfakecontentwasintheformofnon-consensualporntillDecember2018,andRanaAyyub’scase12wasoneofthebiggestexamplesinthedeepfakehistorytodepictthedepthofrevengepornplottingthroughthistechnology.

1Datamanipulationhasbeeninpracticesincethe1890s;Pleasesee:

/collections/spanish-american-war-in-motion-pictures/

articles-and-essays/the-motion-picture-camera-goes-to-war/remember-the-maine-the-beginnings-of-war/,

(lastaccessedOctober10,2024).

2Pleasesee:

/en/news-release/2022/10/27/2542944/0/en/Deepfake-content-on-the-internet-is-growing-at

-the-rate-of-a-whopping-400-year-on-year.html

,(lastaccessedOctober10,2024).

3Pleasesee:

/2023/01/22/business/media/deepfake-regulation-difficulty.html

,(lastaccessedOctober10,2024).

4Pleasesee:

/videorewrite/VideoRewrite.pdf,

(lastaccessedOctober10,2024).

5Pleasesee:

/pdf/1406.2661.pdf,

(lastaccessedOctober10,2024).

6Pleasesee:

/blog/generating-photorealistic-fake-celebrities-with-artificial-intelligence/,

(lastaccessedOctober10,2024).

7TheReddituser’ssoftwarewascalledFakeApp,andwasusedbyBuzzFeedin2018tocreateadeepfakevideoofBarackObamaaddressingthisissue.Pleasesee:

/craigsilverman/obama-jordan-peele-deepfake-video-debunk-buzzfeed

.

8Pleasesee:

/volumes/Vol97No22/7Vol97No22.pdf,

(lastaccessedOctober10,2024).

9Pleasesee:

https://iimk.ac.in/uploads/faculty/CAIS_20220810062848.pdf,

(lastaccessedOctober10,2024).

10Pleasesee:

/google-dictionary-en/,

(lastaccessedOctober10,2024).

11Pleasesee:

/pdf/2005.13770.pdf,

(lastaccessedOctober10,2024).

12Pleasesee:

/archive/in/entry/deepfake-porn_in_5c1201cfe4b0508b213746bd

,(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly1

Introduction

However,overtime,inaround2019,theusecasesofdeepfaketechnologystartedtocomeintothelimelighttoo.13BigTechorganizationslikeMicrosoft,14Google,15andSamsung16adoptedGANforcontentgeneration.Currently,theusesofdeepfaketechnologycanbeseeninthemedical,17entertainment,18marketing,19andfashion,20industriesamongothers;settingsomenoteworthyexamplesanddepictingthatthetechnologycanhaveanarrayofbeneficialusestoo.

Irrespectiveoftheeventsthatbroughtdeepfaketechnologyintothefocusofattention,thepossibilitiesthatarisewithitsuseareendless.Additionally,thereasonforitssignificantbreakthroughishowconvincingthesemediaemployingdeepfaketechnologyaretotheperceptiblehumanmind,andastimeprogresses,thesealteredmediaarebecomingincreasinglyclosertoreality.21

Contentmanipulationhasnowbecomemainstreamandeasilyaccessible,withthequalityofforgedcontentbeingsohighthatitbecomesimpossibletofilteroutwithabareeye.However,itisimportanttoacknowledgethatwiththequalityofthisfabricatedcontentrising,theimplicationsandinturnliabilitieswouldrisetoo.

Inthispaper,wehavesystematicallyexaminedthetypesandunderlyingtechnologiesbehinddeepfakes,followedbytheuseandmisusecasesofsuchtechnology.Additionally,wehavediscussedthelegal,regulatory,andethicalimplicationsofdeepfakesinIndiaandotherjurisdictions.

13Pleasesee:

/impressive-applications-of-generative-adversarial-networks/,

(lastaccessedOctober10,2024).

14Pleasesee:

/microsoft-has-made-their-own-ai-powered-image-generator-and-its-pretty-meh/,

(lastaccessedOctober10,2024).

15Pleasesee:

/2020/11/using-gans-to-create-fantastical.html

,(lastaccessedOctober10,2024).

16Pleasesee:

/global/behind-the-snapshot-how-the-galaxy-s21s-ai-improves-your-photos-in-the-blink-of-an-eye-sin-

gle-take

,(lastaccessedOctober10,2024).

17Pleasesee:

/reader/sd/pii/S0300571222002676?token=5DA9F8AD14B7D8634EBC69B7FCBB9E0414B10BAEF3C33865

833CC51F36FD35144A6558CDA050505AE667AC4F6C17900C&originRegion=eu-west-1&originCreation=20230225021628

,

(lastaccessedOctober10,2024).

18Pleasesee:

/channel/UCi38HMIvRpGgMJ0Tlm1WYdw

,(lastaccessedOctober10,2024).

19Pleasesee:

/news/tech/cadburys-new-ai-tool-will-let-you-create-free-ad-with-shah-rukh-khans-face-and-

voice-4358408.html

,(lastaccessedOctober10,2024).

20Pleasesee:

/sites/katiebaron/2019/07/29/digital-doubles-the-deepfake-tech-nourishing-new-wave-retail/?sh=2d473f-

bc4cc7,

(lastaccessedOctober10,2024).

21Pleasesee:

/publication/338144721_Deepfakes_Trick_or_treat

,(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly2

UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

A.Meaning

Deepfakesaretypicallyunderstoodtobemanipulatedmedia.1However,tojustsaythatdeepfakesaresynthesizedmediacreatedbyusingidentity-swappingalgorithmswouldnotdojusticetothedepthofthisconcept.Inaworldwhereeveryimageorvideoontheinternetmaybealteredtosomedegreeusingdeeplearning,itbecomesdifficulttoagreeonacommondefinitionofdeepfakessincethelinewhereapictureorvideobecomes“manipulated”or“fake”isblurred.

Nevertheless,theusageofdeeplearningtechnologytoproducefakecontentcontributedtowardstheportmanteau–Deepfakes.2Eventhoughthereisnogloballyagreedupondefinitionfordeepfakes,theycametobe

understoodconventionallyas“fakeimagescreatedbyanadvancedimageediting,deeplearningsoftware.”3

Tounderstandthenatureofdeepfakes,itiscrucialtoestablishthatdeeplearningisamachinelearningtoolthatformsthebasisofpowerfulalgorithms.Thesealgorithmsaredesignedtouseenormousvolumesofdatatolearntoperformspecifictasks.Simplyput,deeplearningisatypeofAI,anditusesartificialneuralnetworkstomimicthelearningprocessofthehumanbrain.4Deeplearningisafundamentalelementofthedeepfakephenomenon,asthealgorithmsfeedontotheexistingandavailabledata5tocreatefakeimagesandvideosthathumanscannotdistinguishfromauthenticones.6

Thereisnodistinguishabledivisionthatseparates‘acceptable’formsofaugmentationorspecialeffectstomediafromthosewhichmaytypicallybeseenasmanipulated.Although,themanipulatedcontentthatisnotgeneratedusingAIordeeplearningtechnologyusuallybearsalowerqualityandiseasiertopointoutfromthegenuinecontent.Theserelativelypoorlyengineeredphotosandvideosareusuallyreferredtoascheapfakesorshallowfakes.7

AJuly2021studyundertakenfortheEuropeanParliamenthasdefineddeepfakesas“manipulatedorsyntheticaudioorvisualmediathatseemauthentic,andwhichfeatureapersonthatappearstosayordosomethingtheyhaveneversaidordone,producedusingartificialintelligencetechniques,includingmachinelearninganddeeplearning.”8

1Pleasesee:

/news/2020/01/enforcing-against-manipulated-media/,

(lastaccessedOctober10,2024).

2Pleasesee:

/65354450/IRJET_V7I1265-libre.pdf?1609941112=&response-content-disposition=inline%

3B+filename%3DIRJET_A_Brief_Study_on_Deepfakes.pdf&Expires=1677852603&Signature=Ybf6GhM91ZkpLWPUmRAl6WrpJBbQXXFkHxuLIP

wsmhlwde99WwNaj-i64CUtQLrfiJ2aZLYjXMWAa75rcTHqXp3lClYx5yJAPx-q9od8qTUwTeV2VPlViuq7SeHMDzUzL40mWtmQW7VuPlt0MUkiq3D

LlBz0xhCaVqqoc5d2OiCStVaufRq5Jh9gCulojTMAzl15b9uLPTVeMcZFtadesEcjyxhJMSTOX0MiZStQosOp81sy91AFmeUTzBMOQbVk-r-QZiEBx

A2frryvmMHJrGzg6kpZ1ssHncdwam-P7j1SaeYXU-BLG0PEYlYGjryJgxIrcxUFIYWa6f5R9XdYcA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

,

(lastaccessedOctober10,2024).

3Pleasesee:

/cgi/viewcontent.cgi?article=1742&context=honors-theses

,(lastaccessedOctober10,2024).

4Pleasesee:

/in-en/topics/deep-learning

,(lastaccessedOctober10,2024).

5Pleasesee:

/nl-en/blogs/insights/deepfakes-how-prepare-your-organization

,(lastaccessedOctober10,2024).

6Pleasesee:

/pdf/1909.11573.pdf,

(lastaccessedOctober10,2024).

7Pleasesee:

/wp-content/uploads/2019/09/DS_Deepfakes_Cheap_FakesFinal-1-1.pdf

;:

https://www.lexisnexis.co.uk/legal/

guidance/deepfakes#:~:text=A%20deepfake%20is%20a%20form,a%20realistic%20but%20fake%20video,(lastaccessedOctober10,2024).

8Pleasesee:

https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690039/EPRS_STU(2021)690039_EN.pdf,

(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly3

UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

Therehasbeenaplethoraofattemptstodefinedeepfakes,anditisanarduoustasktofindanagreeabledefinitionforthem.Although,thefollowingelementsseemtobelargelyacceptedasbeingfundamentallypartofwhatdeepfakesare:

a.Alterationofmediausingdeeplearningtechnologicaltools;

b.Alteredmediathatinvolvestheassumptionofanidentityofaperson;and

c.Anuntruealteredmediadepictedastruetothecasualviewer.

B.TypesofDeepfakes

Mostdeepfakevideosinvolvefacialmanipulation,whereaface,faces,orpartsthereofaremanipulatedandthensuperimposedorinsertedonanotherfaceorpartthereof.9Themanipulationmaybestatic,asinthecaseofanimage,ordynamicasinavideo.Thedeepfaketechnologymaybeusedtocreatedoctoredcontentthroughreenactment,replacement,editing,andaudioorvisualsynthesis.10

Reenactment11

Reenactment,commonlyunderstoodasexpressionswap,isessentiallywheretheimagesarefedintothealgorithmtodrivetheexpressionsofapersonandcreateadeepfake.Areenactmentdeepfakeallowsthecreatortoimpersonateanindividual’sappearanceandinturn,controlwhattheyappeartosayordo.Thisisoneofthemostdangeroustypesofdeepfakes,astheycanbeusedtoperformactsofdefamation,spreadmisinformation,andtamperwithevidence.

FacialReenactment

GazeMouthExpressionPoseComplete

Source:Medium12

9Pleasesee:

https://iimk.ac.in/uploads/faculty/CAIS_20220810062848.pdf,

(lastaccessedOctober10,2024).

10Pleasesee:

/pdf/2004.11138.pdf,

(lastaccessedOctober10,2024).

11Pleasesee:

.au/cgi/viewcontent.cgi?article=2530&context=theses_hons

,(lastaccessedOctober10,2024).

12Pleasesee:

/voxel51/have-deepfakes-influenced-the-2020-election-c0fc890aca0f

.,(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly4

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

Replacement13

Replacement,commonlyunderstoodasfaceoridentityswap,iswhentheimagesarefedintothealgorithmtoreplacethefaceofonepersoninanimageorvideowiththatofanotherperson.Thismethodposesdangertoo,asitcanbeusedfortheproductionofrevengepornographicvideos,cheating,andfinancialfraud.Someoftheusecasesofthismethodincludegeneratingmemesorsatiricalcontent,orfaceswappingforanonymiza-tionofone’sidentityinpubliccontent.

FaceReplacement

TransferSwap

Source:InfoQ14

Editing15

Througheditingorattributealteration,aportionofthefaceismanipulatedtoachieveadifferentresult.Mediaretouchingdonethroughthismethodcomprisesalteringfacialfeaturessuchasgender,age,ethnicity,etc.Thismethodismisusedwidely,forinstance,fortheremovalofavictim’sclothesforhumiliationorentertainment.Atthesametime,thismethodofcreatingdeepfakesisusedforentertainmentandeasyeditingpurposestoo.

FaceEditing

HairArticleAgeBeautyEthnicity

Source:InfoQ16

13Pleasesee:

/blog/how-easy-is-it-to-make-and-detect-a-deepfake/,

(lastaccessedOctober10,2024).

14Pleasesee:

/article/u7jtw13waskch2mpl918

.

15Pleasesee:

/2313-433X/9/1/18

,(lastaccessedOctober10,2024).

16Pleasesee:

/article/u7jtw13waskch2mpl918

,(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly5

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

VisualSynthesis17

Visualsynthesisallowsthecreationofadeepfakewithnotargetimagesorvideosasabasis.Entirefacesynthesisisusuallybasedondatasetsthatareeasilyavailableonline.Thismethodallowsthecreationofunrealpersonasonlineandmaybeusefulfornon-personalcommunicationwhileatthesametimeholdingthepotentialforfraudorthespreadofmisinformation.Fore.g.,thismethodalsobeusedtogeneratenon-existingfaceimagesforthecharactersinmoviesandgames.

EntireFaceSynthesis

FakeReal

Source:Medium18

AudioSynthesis19

Incasesofaudiosynthesis,anaudioclipofapersonspeaking,oreventhespeechinwritingisobtained,andanaudioclipisproducedoutofthespeechortextinthetoneandstyleofachosentarget,therebygivingtheimpressionthatthetargetpersonisspeaking.Thismethodposesathreatasitmakesphone-callfraudsverystraightforwardforthescammers.Although,speechsynthesishasalsobeenrelieduponinthemedicalindustrytohelppatientswithimpairment.

DataCollection

SpeakerEncoding

ModelTrainingTestingand

Evaluation

>

DistributionandUse

AudioData

Preprocessing

SpeechSynthesisandoptimization

Source:BotTalk20

17Pleasesee:

/pdf/1912.04958.pdf,

(lastaccessedOctober10,2024).

18Pleasesee:

/deepfakes-production-detection-using-various-deep-learning-methodolo-

gies-3221e6002dd2

,(lastaccessedOctober10,2024).

19Pleasesee:

/ftp/arxiv/papers/2111/2111.14203.pdf,

(lastaccessedOctober10,2024).

20Pleasesee:

https://bottalk.io/learn-with-bottalk/everything-about-deepfake-voice/,

(lastaccessedOctober10,2024).

©NishithDesaiAssociates2024Provideduponrequestonly6

UnmaskingDeepfakes—Legal,RegulatoryandEthicalConsiderations

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

C.TechnologiesbehindDeepfakes

MethodsofCreation21

Thereexistsanarrayofmachinelearningtechniquesandalgorithmswhichcanbeusedtocreatedeepfakes,andthequalityoftheresultisdependentnotonlyonthequalityofthealgorithmbutalsoonthequalityandquantityofdatausedtotrainthealgorithm.Itisnocoincidencethatthemajorityofdeepfakevideosontheinternetinvolvefamouspeople,astheyhavelargeamountsofpublicimagesandvideosavailablethatcanbeusedtotrainthealgorithm.

Deepfakesareusuallycreatedusingvariationsorcombinationsofgenerativenetworksandencoder-decodernetworks.DifferentkindsofGenerativeNeuralNetwork(“GNN”)architecturesareusedforthegenerationofartificiallyorchestratedcontent.Aneuralnetworkisessentiallyanalgorithmicmodelwhichgeneratescontentbasedonaninput.BelowarethedifferentGNNsusedforthecreationofdeepfakes.

I.Encoder-DecoderNetworks(“EDN”)

AnEDNismadeupoftwoormorealgorithmsthatcompressanddecompresspictures.Deepfakesarecreatedusingautoencoders,whichrecreateasubjectbasedontheinformationrelativetothedataprovidedtoit.Thesubjectsusedtocreatethedeepfakemusthaveasmanysimilaritiesaspossibletotheintendedoutputsothatthesharedencodercanidentifymeaningfulfeaturesandtransferthemappropriately.

Thequantityandqualityofdatapresentedtothealgorithmduringtheprocessisdirectlyproportionatetotheresult’squality.Autoencoderstrainedonmillionsofphotosofafacefromvariousanglesandunderavarietyoflightingconditionswillperformfarbetterandproducemorerealisticresultsthanencoderstrainedonafewhundredimageswithlittlevariationacrossthem.

II.ConvolutionalNeuralNetwork(“CNN”)

ACNNlearnspatternhierarchiesindataandishenceaveryefficienttoolfordealingwithpictures.

CNNhastheuniquecapacitytoextractfeaturesfromimages,whichmaythenbeutilizedinavariety

ofapplications.ACNNextractsalayerofcharacteristicsfromadatasetandappliesittoaninputimage;bycombiningnumerouslayersofthesecharacteristics,itispossibletoconstructrealistic-lookingdeepfakes.

III.GenerativeAdversarialNetworks(“GAN”)

GANwasfirstintroducedin2014andhassincebecomeoneofthemostpopulartoolsforcreatingdeepfakes.GANsaremadeupoftwoneuralnetworksthatcompetewithoneanother.Theycan“learnfromtheirblunders”anddetectpatternsinenormousvolumesofvisualdata.Severallicensedpictureandvideoeditingsoftware,augmentedandvirtualrealityapplications,andcutting-edgemedicalimagingtoolsusethem.22TherearetwopopularimagetranslationframeworksthatusethefundamentalprinciplesofGANsinthecreationofdeepfakes:(i)image-to-imagetranslationwhichisoftenrelieduponforgeneratinghigh-resolution

21Pleasesee:

/pdf/2004.11138.pdf,

(lastaccessedOctober10,2024).

22Pleasesee:

/impressive-applications-of-generative-adversarial-networks/,

(lastaccessedOctober10,2024).©NishithDesaiAssociates2024Provideduponrequestonly7

DimensionsofDeepfakes:Meaning,TypesandtheTechnologies

imagerywithbetterfidelity,and(ii)CycleGANwhichisacombinationoftwoGANsandcanbeusedforobjecttransfigurationandstyletransfer.

IV.RecurrentNeuralNetworks(“RNN”)

AnRNNisaformofneuralnetworkthatremembersitsinternalstateafterprocessingadatasetandcansubsequentlybeusedtoprocessfurtherdatasets.RNNsarefrequentlyemployedindeepfakegenerationtomodifyaudioand,insomecases,video.

Withtheusageoftheabove-discussedunderlyingtechnologies,multipleconsumer-gradewebsitesandapplicationshavealsobeencreatedthatallowuserstoproducedeepfakes.

SomeoftheseincludeFakeApp,FaceSwap,DeepFaceLab,DFaker,FaceSwap-GAN,DeepFake-tf,ZAO,Auto-FaceSwap,FSGAN,FewShotFace,andStarGAN.23

Further,videoeditingsoftwarelikeAdobeAfterEffectsorWondershareFilmoracanbeusedtocreatecheapfakes,ifnotdeepfakes.Mostoftheseapplicationsarepubliclyavailableandcanproducealarge

rangeofmanipulateddata–dependingonthequalityoftheimagesfedandtheplatformused.

MethodsofDetection

Deepfakesarearesultofsuperimpositionwhichbecomespossiblethroughtheextensivecombinationsofdatasetsandthetechnologiesdiscussedintheprevioussection.Sincethealgorithmsputtouseforthemanipulationareonly“editing”pre-existingdata,gapscontinuetoremainintheresults.Minutefeatureslikeeyemovements,lighting,andshadowsoftencreatediscrepanciesthatallowfordeepfakedetection.24Thereexistdifferentsetsoftoolsforthedetectionofdeepfakesinimages,andinvideos.25Forinstance,thedetectionofdeepfakeimagesmaybedonethroughthedeploymentofthefollowingmethods:

DetectionofGAN-generatedimagesmaybedonethroughanimagepreprocessingstepanddifferentiatingtheswappedimagesfromthegenuine.26

Atwo-phaseddeeplearningmethodmaybeimplemented,inwhichthefirstphaseusesafeature

extractorthroughthecommonfakefeaturenetworkandthesecondphasecategorizesthefakeandrealimagesbasedontheresultsofthefirst.27

ACNNmodelmaybeusedtoidentifytheimageswherethefacialexpressionsaremaliciouslytamperedwith.

Simila

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论