版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《导数的概念》说课稿教学内容分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspireCAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计预计时间(分)教学内容教师活动学生活动教学评价5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态.(4)提问:用一个什么样的量来反映物体在某一时刻的运动状态?(5)提问:我们如何得到物体在某一时刻的瞬时速度?例如,要求物体在2S的瞬时速度,应该怎么解决?(6)我们一起来看物理中测即时速度(瞬时速度)的视频:(7)提问:这里所测得的真的是瞬时速度吗?(8)提问:怎样使平均速度更好的表示瞬时速度?(9)在学生回答的基础上讲述:真正的瞬时速度根本无法通过仪器测定,我们将平均速度作为瞬时速度的近似值;为了使平均速度更好的表示瞬时速度,应该让时间间隔尽量小.回答问题后理解:(1).(2).(3)学生在教师的讲述中思考用什么量来反映运动员的运动状态.(4)让学生体会并明确瞬时速度的作用.(5)学生思考.(6)学生观看视频并思考.(7)期望或引导答出“是平均速度”.(8)学生回答,得出“时间间隔越小越好!”(9)学生体会教师所讲结论.(1)复习过程应使学生明确函数的平均变化率表示.(2)应使学生明确平均速度与瞬时速度的关系,为下一阶段实验活动作铺垫.15分钟2.体会模型设计意图:让学生在信息技术平台上,通过定量分析感受平均速度在时间间隔越来越小时向瞬时速度逼近的过程.(1)向学生提出数学实验任务:已知跳水运动员在跳水过程中距离水面的高度与时间的函数h(t)=-4.9t2+6.5t+10,请你用计算器完成下列表格中t0=2秒附近的平均速度的计算并填充好表格,观察平均速度的变化趋势.数学实验记录单(1)x>0时,在[2,2+x]内,x<0时,在[2+x,2]内,Xx0.1-0.10.01-0.010.001-0.0010.0001-0.00010.00001-0.000010.000001-0.000001你认为运动员在t0=2秒处的瞬时速度为m/s.(2)提问:x、g(x)的含义各是什么?(3)提问:观察你自己的实验记录单,你能发现平均速度有什么变化趋势吗?先展示一个同学的实验结果,并让他说说他的发现,再将计算器的结果投影,引导同学们一起观察.(4)将学生分四个组,让他们分别完成t0=1.6、1.7、1.8、1.9时的实验记录单(2)的填写,说出他们观察的结果,并将4个结果写列在黑板上.tt0=1.6→-9.18t0=1.7→-10.16t0=1.8→-11.14t0=1.9→-12.12t0=2→-13.1在学生实验与观察的基础上指出:当趋近于0时,平均速度都趋近于一个确定的常数,这个常数就是瞬时速度.(1)学生在TI-nspireCAS上完成以下操作:(2)学生操作得出如下结果,完成数学实验记录单(1)的填写:(3)让学生讲他所发现的规律.(4)学生分4个组再次实验,分别完成本组的数学实验记录单(2)的填写,并观察平均速度的变化趋势,回答教师的提问.(1)应使学生在技术平台上通过多次实验感受到平均速度在→0时趋近于一个常数,并理解这个常数的意义.(2)应使学生从感性上获得求瞬时速度的方法.103.提炼模型设计意图:使学生认识到平均速度当时间间隔趋向于零时的极限就是瞬时速度,为给出导数概念提炼出一个具体的极限模型.(1)提问:你认为通过实验所得结果(常数)就是瞬时速度吗?这个数据到底是精确值还是近似值?(2)让学生动笔化简t0=2对应的平均速度的表达式.(化简结果为)(3)引导学生从化简的表达式中发现当△t0时,-13.1.(4)让学生动手化简t0=1.6对应的平均速度的表达式.(化简结果为)启发学生归纳出结论:△t0时,平均速度所趋近的这个常数是可以得到的,它不是近似值,是一个精确值,它与变量△t无关,只与时刻t0有关.(5)提问:我们得到了t0=1.6、1.7、1.8、1.9时的瞬时速度,但这还不足以代表所有时刻的瞬时速度,能不能用同样的办法,得到t0时的瞬时速度?启发学生化简平均速度的表达式,并与学生一起总结出:.(6)教师讲解:用表示所趋近的常数,即.今后把这个常数叫做在处,当趋近于0时,平均速度的极限.比如,-13.1是在处,当△t趋近于0时的极限.(1)学生思考,也可以讨论.(2)学生化简t0=2处对应的平均速度的表达式,观察当△t0时平均速度表达式的变化趋势.(3)学生化简t0=1.6处对应的平均速度的表达式,观察当△t0时平均速度表达式的变化趋势.(3)学生化简任意时刻t0处对应的平均速度的表达式,观察当△t0时平均速度表达式的变化趋势.(4)学生根据教师的讲解理解平均速度的极限的意义.应使学生通过动手计算,得到平均速度在→0时趋近于一个常数,并且这个常数就是瞬时速度.使学生理解极限符号表示的意义.54.形成概念设计意图:完成从运动物体的瞬时速度到函数瞬时变化率的过渡,形成导数的概念并给出定义.(1)给出下列图示:(2)针对上述图示,教师在启发后提问:通过前面的学习,我们知道平均速度就是函数h(t)的平均变化率.瞬时速度就是函数h(t)的瞬时变化率.同时,我们已经知道:平均速度在△t→0时的极限就是瞬时速度.那么,你能否说说,一般情况下,函数的平均变化率与瞬时变化率是一个什么关系?(3)在学生理解了函数的平均变化率与瞬时变化率的关系后提问:函数f(x)在x=x0处的瞬时变化率怎样表示?教师介绍如下的的表示方法:函数f(x)在x=x0处的瞬时变化率可表示为.(4)教师给出导数的定义:函数在处的瞬时变化率称为在处的导数,记作或,即.(1)在教师的启发下思考函数的平均变化率与瞬时变化率之间的关系.(2)回答教师的提问.(3)理解函数导数的概念与导数的表示方法.应使学生从“平均速度的极限是瞬时速度”这个具体的模型中抽象出导数的概念,并能理解导数是一个极限,明确导数的表示.55.应用概念设计意图:让学生进一步理解导数概念,体会导数的应用价值,熟悉求导数的步骤.(1)提问:你能说说求函数y=f(x)在x=x0处的导数的步骤吗?教师在学生说的基础上要总结出步骤.(2)讲解例1:将原油精练为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第x(h)时,原油的温度(单位:)为:f(x)=x2-7x+15(0≤x≤8).计算第2(h)和第6(h)时,原油温度的瞬时变化率,并说明它们的意义.强调:第2小时的瞬时变化率为-3,说明在第2小时附近,原油大约以的速度下降.(3)提出练习:计算3h时原油温度的瞬时变化率,表述你所得结果的意义.(1)学生思考并交流求函数在x0处的导数的步骤.(2)在教师讲解完后完成教师提出的练习.(3)求出后,回答的意义.(1)检查学生是否清楚求导数的步骤.(2)检查学生能否准确地求出函数在某点的导数.(3)应使学生能利用计算结果解释导数(即瞬时变化率)的意义.56.小结作业设计意图:让学生通过总结,进一步体会导数的意义及极限的思想,训练学生的概括能力.通过布置作业,巩固所学内容.(1)让学生小结并交流.(2)教师总结:本节课学习了导数的概念,在这个过程中我们看到:数学使不可能的事情变成现实;导数的概念表明:当自变量的增量趋向于零时,函数在某点的平均变化率的无限地趋向于函数在该点的瞬时变化率,这是非常重要的极限思想.求导数的步骤大致分为以下三步:第一步,求函数增量;第二步,求平均变化率并化简;第三步,求平均变化率的极限,即导数.作业:A层:P10/2,3,4.B层:A层+补充.(补充)已知y=x3.求:(1);(2).思考本节课所学内容,可以彼此之间交流自己的小结,回答教师提问.(1)使学生不仅能从知识的角度看所学过的内容,还能体会到寓于知识中的数学思想与方法.(2)分层次提供作业,是为了满足不同层次学生的需求.《导数的概念》教学说明一、教材分析导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.二、教学目标及分析1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.上述目标中,目标1是形成概念的基础,它提供了一个具体的导数模型.目标2是教学重点,是本节课要花近一半时间去完成的目标.目标3体现了算法思想,这是教学中应该充分重视的方面.目标4和5体现了数学育人的重要价值.三、学生分析要使学生能通过观察发现运动的物体在某一时刻的平均速度的极限是一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度,一个非常难突破的问题就是大量平均速度的计算问题.为解决这个问题,在教学时为每个学生准备一台Ti-nspireCAS图形计算器,利用这种计算器的CAS功能,可以在较短的时间内解决计算问题,从而使学生有更多的时间用于观察与发现.另外,从具体的模型中提炼出一般的概念的困难在于具体模型的数量,因此,设计本节课的教学时,在教材的基础上增加了计算跳水运动员瞬时速度的数目,以此大大方便了学生归纳与概括.四、教法特点及预期效果本节课在教学方法的选择上,充分尊重学生认知事物的基本规律,强调教师的启发与学生的参与度,给学生操作感知、观察发现的时间充分.由于技术的介入,大大方便了学生获得导数概念的表象,因此学生通过表象抽象出导数概念的过程自然到位,并且能帮助学生更准确地理解导数的本质.《导数的概念》教案【教学目标】:理解导数的概念并会运用概念求导数。【教学重点】:导数的概念以及求导数【教学难点】:导数的概念【教学过程】:一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。二、新授课:1.设函数在处附近有定义,当自变量在处有增量时,则函数相应地有增量,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即注:1.函数应在点的附近有定义,否则导数不存在。2.在定义导数的极限式中,趋近于0可正、可负、但不为0,而可能为0。3.是函数对自变量在范围内的平均变化率,它的几何意义是过曲线上点()及点)的割线斜率。4.导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度,它的几何意义是曲线上点()处的切线的斜率。因此,如果在点可导,则曲线在点()处的切线方程为。5.导数是一个局部概念,它只与函数在及其附近的函数值有关,与无关。6.在定义式中,设,则,当趋近于0时,趋近于,因此,导数的定义式可写成。7.若极限不存在,则称函数在点处不可导。8.若在可导,则曲线在点()有切线存在。反之不然,若曲线在点()有切线,函数在不一定可导,并且,若函数在不可导,曲线在点()也可能有切线。一般地,,其中为常数。特别地,。如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数。称这个函数为函数在开区间内的导函数,简称导数,也可记作,即==函数在处的导数就是函数在开区间上导数在处的函数值,即=。所以函数在处的导数也记作。注:1.如果函数在开区间内每一点都有导数,则称函数在开区间内可导。2.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数在点处的导数就是导函数在点的函数值。3.求导函数时,只需将求导数式中的换成就可,即=4.由导数的定义可知,求函数的导数的一般方法是:(1).求函数的改变量。(2).求平均变化率。(3).取极限,得导数=。例1.求在=-3处的导数。例2.已知函数(1)求。(2)求函数在=2处的导数。小结:理解导数的概念并会运用概念求导数。练习与作业:1.求下列函数的导数:(1);(2)(3)(3)2.求函数在-1,0,1处导数。3.求下列函数在指定点处的导数:(1);(2);(3)(4).4.求下列函数的导数:(1)(2);(3)(4)。5.求函数在-2,0,2处的导数。《导数的背景》教案【教学目标】:理解函数的增量与自变量的增量的比的极限的具体意义【教学重点】:瞬时速度、切线的斜率、边际成本【教学难点】:极限思想【教学过程】一、导入新课1.瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少?析:大家知道,自由落体的运动公式是(其中g是重力加速度).当时间增量很小时,从3秒到(3+)秒这段时间内,小球下落的快慢变化不大.因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+)秒这段时间内位移的增量:从而,.从上式可以看出,越小,越接近29.4米/秒;当无限趋近于0时,无限趋近于29.4米/秒.此时我们说,当趋向于0时,的极限是29.4.当趋向于0时,平均速度的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s=s(t),则物体在t到(t+)这段时间内的平均速度为.如果无限趋近于0时,无限趋近于某个常数a,就说当趋向于0时,的极限为a,这时a就是物体在时刻t的瞬时速度.2.切线的斜率问题2:P(1,1)是曲线上的一点,Q是曲线上点P附近的一个点,当点Q沿曲线逐渐向点P趋近时割线PQ的斜率的变化情况.析:设点Q的横坐标为1+,则点Q的纵坐标为(1+)2,点Q对于点P的纵坐标的增量(即函数的增量),所以,割线PQ的斜率.由此可知,当点Q沿曲线逐渐向点P接近时,变得越来越小,越来越接近2;当点Q无限接近于点P时,即无限趋近于0时,无限趋近于2.这表明,割线PQ无限趋近于过点P且斜率为2的直线.我们把这条直线叫做曲线在点P处的切线.由点斜式,这条切线的方程为:.一般地,已知函数的图象是曲线C,P(),Q()是曲线C上的两点,当点Q沿曲线逐渐向点P接近时,割线PQ绕着点P转动.当点Q沿着曲线无限接近点P,即趋向于0时,如果割线PQ无限趋近于一个极限位置PT,那么直线PT叫做曲线在点P处的切线.此时,割线PQ的斜率无限趋近于切线PT的斜率k,也就是说,当趋向于0时,割线PQ的斜率的极限为k.3.边际成本问题3:设成本为C,产量为q,成本与产量的函数关系式为,我们来研究当q=50时,产量变化对成本的影响.在本问题中,成本的增量为:.产量变化对成本的影响可用:来刻划,越小,越接近300;当无限趋近于0时,无限趋近于300,我们就说当趋向于0时,的极限是300.我们把的极限300叫做当q=50时的边际成本.一般地,设C是成本,q是产量,成本与产量的函数关系式为C=C(q),当产量为时,产量变化对成本的影响可用增量比刻划.如果无限趋近于0时,无限趋近于常数A,经济学上称A为边际成本.它表明当产量为时,增加单位产量需付出成本A(这是实际付出成本的一个近似值).二、小结瞬时速度是平均速度当趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率当趋近于0时的极限;边际成本是平均成本当趋近于0时的极限.三、练习与作业:1.某物体的运动方程为(位移单位:m,时间单位:s)求它在t=2s时的速度.2.判断曲线在点P(1,2)处是否有切线,如果有,求出切线的方程.3.已知成本C与产量q的函数关系式为,求当产量q=80时的边际成本.4.一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为,求t=4s时此球在垂直方向的瞬时速度.5.判断曲线在(1,)处是否有切线,如果有,求出切线的方程.6.已知成本C与产量q的函数关系为,求当产量q=30时的边际成本.《导数的概念习题课》教案【教学目标】:理解导数的有关概念,掌握导数的运算法则【教学重点】:导数的概念及求导法则【教学难点】:导数的概念【教学过程】一、课前预习1.在点处的导数是函数值的改变量__________与相应自变量的改变量__的商当______________2.若在开区间(a,b)内每一点都有导数,称为函数的导函数;求一个函数的导数,就是求_____;求一个函数在给定点的导数,就是求____.函数在点处的导数就是_________.3.常数函数和幂函数的求导公式:4.导数运算法则:若________________,则:二、举例例1.设函数,求:(1)当自变量x由1变到1.1时,自变量的增量;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论