版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页共13页《三垂线定理》练习课(一)教学目标1.进一步理解、记忆并应用三垂线定理及其逆定理;2.理解公式cosθ1·cosθ2=cosθ的证明及其初步应用;(课本第122页第3题)3.理解正方体的体对角线与其异面的面对角线互相垂直及其应用;4.了解课本第33页第11题.教学重点和难点教学的重点是进一步掌握三垂线定理及其逆定理并应用它们来解有关的题.教学的难点是在讲公式cosθ1·cosθ2=cosθ应用时比较θ2与θ的大小.教学设计过程师:上一节课我们讲了三垂线定理及其逆定理的证明并初步应用了这两个定理来解一些有关的题.今天我们要进一步应用这两个定理来解一些有关的题,先看例1.例1
如图1,AB和平面α所成的角是θ1;AC在平面α内,BB′⊥平面α于B′,AC和AB的射影AB′成角θ2,设∠BAC=θ.求证:cosθ1·cosθ2=cosθ.师:这是要证明三个角θ1,θ2和θ的余弦的关系,θ1已经在直角△ABB′中,我们能否先作出两个直角三角形分别使θ2和θ是这两个直角三角形中的锐角.生:作B′D⊥AC于D,连BD,则BD⊥AC于D.这时θ2是直角△B′DA中的一个锐角,θ是直角△ABD中的一个锐角.师:刚才的表述是应用三垂线定理及其逆定理时常常使用的“套话”,我们一定要很好理解并能熟练地应用.现在已经知道θ1、θ2和θ分别在三个直角三角形中,根据三角函数中的余弦的定义分别写出这三个角的余弦,再来证明这公式.师:这个公式的证明是利用余弦的定义把它们转化成邻边与斜边的比,为此要先作出直角三角形,为了作出直角三角形我们应用了三垂线定理.当然也可用它的逆定理.这个公式是在课本第121页总复习参考题中的第3题.我们为什么要提前讲这个公式呢?讲这个公式的目的是为了用这个公式,因为在解许多有关题时都要用到这公式.那我们要问在什么条件下可用这个公式?生:因为θ1是斜线AB与平面α所成的角,所以只有当图形中出现斜线与平面所成的角时,才有可能考虑用这公式.师:为了在使用这个公式时方便、易记,我们规定θ1表示斜线与平面所成的角,θ2是平面内过斜足的一条射线与斜线射影所成的角,θ是这条射线与斜线所成的角.下面我们来研究一下这个公式的应用.应用这个公式可解决两类问题.第一是求值.即已知这公式中的两个角,即可求出第三个角或其余弦值.例如:θ=60°,这时θ2<θ;当θ1=45°,θ2=135°时,cosθ=cos45°·cos135°=第二是比较θ2与θ的大小.因为我们已经规定θ1是斜线与平面所成的角,一定有0°<θ1<90°,它的大小不变,为了比较θ2与θ的大小,下面分三种情况进行讨论.(1)θ2=90°,因为θ2=90°,所以cosθ2=0,因此cosθ=cosθ1·cosθ2=0,故θ=90°.当θ=90°时,我们也可以证明θ2=90°.一条直线如果和斜线的射影垂直,那么它就和斜线垂直.这就是三垂线定理.一条直线如果和斜线垂直,那么它就和斜线的射影垂直.这就是三垂线定理的逆定理.所以,我们可以这样说,这个公式是三垂线定理及其逆定理的一般情况,而三垂线定理及其逆定理是这公式的特殊情况.现在我们来研究在θ2是锐角时,θ2与θ的大小.(2)0°<θ2<90°.师:在这个条件下,我们怎样来比较θ2与θ的大小?生:因为0°<θ1<90°,所以0<cosθ1<1,又因为0°<θ2<90°,所以0<cosθ2<1.又因为cosθ=cosθ1·cosθ2,所以0<cosθ1<1,而且cosθ=cosθ1·cosθ2<cosθ2,在锐角条件下,余弦函数值大的它所对应的角小.所以θ2<θ.师:现在我们来讨论当θ2是钝角时,θ2与θ的大小.(3)90°<θ2<180°.在这个条件下,我们不再用公式cosθ1·cosθ2=cosθ做理论上的证明来比较θ2与θ的大小,而是一起来看模型(或图形).我们假设θ2的邻补角为θ′2,θ的邻补角为θ′,即θ2+θ′2=180°,θ+θ′=180°.在模型(或图形)中我们可以看出当θ2是钝角时,θ也是钝角,所以它们的两个邻补角θ′2和θ′都是锐角,由对第二种情况的讨论我们知道θ′2<θ′.由等量减不等量减去小的大于减去大的,所以由θ2=180°-θ′2,θ=180°-θ′,可得θ2>θ.根据以上讨论现在小结如下:当θ2=90°时,θ=θ2=90°,它们都是直角.当0°<θ2<90°时,θ2<θ,它们都是锐角;当90°<θ2<180°时,θ2>θ,它们都是钝角.关于公式cosθ1·cosθ2=cosθ的应用,今后还要随着课程的进展而反复提到.现在我们来看例2.例2
如图2,在正方体ABCD-A1B1C1D1中,求证:(1)A1C⊥平面C1DB于G;(2)垂足G为正△C1DB的中心;(3)A1G=2GC.师:我们先来证明第(1)问.要证直线与平面垂直即要证什么?生:要证A1C与平面C1DB内两条相交的直线垂直.师:我们先证A1C为什么与DB垂直?生:连AC,对平面ABCD来说,A1A是垂线,A1C是斜线,AC是A1C在平面ABCD上的射影,因为AC⊥DB(正方形的性质),所以
A1C⊥DB.(三垂线定理)同理可证A1C⊥BC1.因为A1C⊥平面C1DB(直线与平面垂直的判定理)(在证A1C⊥BC1时,根据情况可详、可略,如果学生对应用三垂线定理还不太熟悉,则可让学生把这证明过程再叙述一遍,因为这时是对平面B1BCC1来说,A1B1是垂线,A1C是斜线,B1C是A1C在平面B1BCC1上的射影,由B1C⊥BC1,得A1C⊥BC1)师:现在来证第(2)问,垂足G为什么是正△C1DB的中心?生:因为A1B=A1C1=A1D,所以BG=GC1=DG,故G是正△C1DB的外心,正三角形四心合一,所以G是正△C1DB的中心.师:现在来证第(3)问,我们注意看正方体的对角面A1ACC1,在这对角面内有没有相似三角形?生:在正方体的对角面A1ACC1内,由平面几何可知△A1GC1∽△OGC,且A1C1∶OC=A1G∶GC,所以A1G∶GC=2∶1,因此A1G=2GC.师:例2是在正方体的体对角线与其异面的面对角线互相垂直引申而来,而例2也是一个基本的题型,对于以后证有关综合题型时很有用.所以对例2的证明思路和有关结论,尽可能的理解、记住.现在我们来看例3.例3
如图3,已知:Rt△ABC在平面α内,PC⊥平面α于C,D为斜边AB的中点,CA=6,CB=8,PC=12.求:(1)P,D两点间的距离;(2)P点到斜边AB的距离.师:现在先来解第(1)问,求P,D两点间的距离.师:现在我们来解第(2)问,求P点到AB边的距离.生:作PE⊥AB于E,连CE则CE⊥AB.(三垂线定理的逆定理)PE就是P点到AB边的距离.师:要求PE就要先求CE,CE是直角三角形ABC斜边上的高,已知直角三角形的三边如何求它斜边上的高呢?生:可用等积式CE·AB=AC·CB,即斜边上的高与斜边的乘积等于两直角边的乘积.师:这个等积式是怎样证明的?生:有两种证法.因CE·AB是Rt△ABC面积的二倍,而AC·CB也是Rt△ABC面积的二倍,所以它们相等;也可用△BCE∽△ABC,对应边成比例推出这个等积式.师:这个等积式很有用,根据这个等积式,我们可以由直角三角形的三边求出斜边上的高,这个等积式以后在求有关距离问题时会常常用到,所以要理解、记住、会用.现在就利用这等积式先求CE,再求PE.师:通过这一题我们要区分两种不同的距离概念及求法;在求点到直线距离时,经常要用到三垂线定理或其道定理;在求直角三角形斜边上的高时会利用上述的等积式来求斜边上的高.现在我们来看例4.例4
如图4,已知:∠BAC在平面α内,POα,PO⊥平面α于O.如果∠PAB=∠PAC.求证:∠BAO=∠CAO.(这个例题就是课本第32页习题四中的第11题.这个题也可以放在讲完课本第30页例1以后讲.不论在讲课本第30页例1,还是在讲这个例时,都应先用模型作演示,使学生在观察模型后,得出相关的结论,然后再进行理论上的证明,这样使学生对问题理解得具体、实在,因而效果也较好)师:当我们观察了模型后,很容易就猜想到了结论.即斜线PA在平面α上的射线是∠BAC的角平分线所在的直线,现在想一想可以有几种证法?生:作OD⊥AB于D,作OE⊥AC于E,连PD,PE,则PD⊥AB,PE⊥AC.所以Rt△PAD≌Rt△PAE,因此PD=PE,故OD=OE,所以∠BAO=∠CAO.师:今天我们讲了公式cosθ1·cosθ2=cosθ.能否用这公式来证明这题.(利用这公式来证明这个题,完全是由学生想到的,当然如果有的班学生成绩较差,思路不活,也可做些必要的提示)生:因为∠PAO是斜线与平面α所成的角,所以可以考虑用公式cosθ1·cosθ2=cosθ.∠PAO相当于θ1;∠PAB=∠PAC它们都相当于θ,由公式可得θ2=θ′2,即∠BAO=∠CAO.师:今天我们是应用三垂线定理及其逆定理来解这四个例题.例1、例2、例4是三个基本题.对这三个题一定要会证、记住、会用.关于这三个题的应用,以后还会在讲课过程中反复出现.在高考题中也曾用到.作业课本第33页第13题.补充题1.已知:∠BSC=90°,直线SA∩平面BSC=S.∠ASB=∠ASC=60°,求:SA和平面BSC所成角的大小.[45°]2.已知:AB是平面α的一斜线,B为斜足,AB=a.直线AB与平面α所成的角等于θ,AB在平面α内的射影A1B与平面α内过B3.已知:P为Rt△ABC所在平面外一点,∠ACB=90°,P到直角顶点C的距离等于24,P到平面ABC的距离等于12,P到AC4.已知:∠BAC在平面α内,PA是平面α的斜线,∠BAC=60°,∠PAB=∠PAC=45°.PA=a,PO⊥平面α于O.PD⊥AC于D,PE⊥AB于E.求:(1)PD的长;《三垂线定理》练习课(二)教学目标1.进一步理解、巩固并应用三垂线定理及其逆定理;2.应用上一节课上所讲的两个基本题来解有关的综合题;3.通过解综合题提高学生解综合题的能力.教学重点和难点教学的重点是进一步掌握三垂线定理及其逆定理,并能灵活的应用它们来解有关的题.教学的难点是在空间图形中有许多平面时,如何选好“基准平面”和“第一垂线”.教学设计过程师:上一节我们应用三垂线定理及其逆定理讲了四个例题.其中大多是基本题.今天我们一方面要在应用这些基本题的基础上解有关的综合题;另外我们再来解其它的综合题来提高我们的解综合题的能力.现在看例1.例1
如图1,已知:PA⊥PB,PA⊥PC,PB⊥PC,求证:△ABC是锐角三角形.师:这一题证法很多,所以我们要多想几种证法.所以
∠BAC是锐角.同理可证∠ABC,∠ACB都是锐角.师:我们能不能直接用三垂线定理来证?生:由已知可得PA⊥平面PBC.在直角三角形PBC中,作PD⊥BC于D,因为∠PBC,∠PCB都是锐角,所以垂足D一定在斜边BC内部,连PD,则PD⊥BC(三垂线定理).对于△ABC来说,因垂足D在BC边内部,所以∠ABC,∠ACB都是锐角,同理可证∠BAC也是锐角.师:能不能用公式cosθ1·cosθ2=cosθ来证明△ABC为锐角三角形?生:因AP⊥平面PBC,所以∠ABP是线面角,相当于θ1,∠PBC相当于θ2,因θ1,θ2都是锐角.所以cosθ1>0,cosθ2>0,cosθ=cosθ1·cosθ2>0,所以θ为锐角。即∠ABC是锐角,同理可证∠BAC,∠ACB都是锐角.师:我们用了三种方法来证明△ABC是锐角三角形,现在我们换一个角度来研究这个基本图形另外一个性质.看例2.例2
如图2,已知:PA⊥PB,PA⊥PC,PB⊥PC.PH⊥平面ABC于H.求证:H点是△ABC的垂心.师:垂心是三角形三边垂线(高线)的交点,要证H是△ABC的垂心,只要证AH⊥BC即可.生:因为
PA⊥BP,PA⊥CP,所以
PA⊥平面PBC.故
PA⊥BC.对于平面ABC来说,PH是垂线,PA是斜线,AH是PA在平面ABC内的射线.因为
PA⊥BC,所以
AH⊥BC.同理可证BH⊥AC,CH⊥AB.故H是△ABC的垂心.师:由例2的演变可得例3,现在我们来看例3.例3
如图3,△ABC中,∠BAC是锐角,PA⊥平面ABC于A,AO⊥平面PBC于O.求证:O不可能是△PBC的垂心.师:要证明O不可能是△PBC的垂心,用什么方法?生:用反证法.师:为什么想到用反证法?生:因为直接证不好证.师:对,因为直接来证不好利用条件,而用反证法,假设O是△PBC的垂心,则这样证明的思路就“活了”,就可利用已知条件,现在我们用反证法来证明.生:假设O是△PBC的垂心,则BO⊥PC.对平面PBC来说,AO是垂线,AB是斜线,BO是AB在平面PBC内的射影.因为
BO⊥PC,所以
AB⊥PC.又因为
PA⊥平面ABC,PA⊥AB,所以AB⊥平面PAC,AB⊥AC,∠BAC是直角,与已知∠BAC是锐角相矛盾.所以假设不能成立,所以O不可能是△PBC的垂心.师:分析例3我们可以看出例3是由例2演变而来.也就是说在PA⊥AB,PA⊥ACO是△PBC的垂心条件下一定可以推导出AB⊥AC.是例2的逆命题再加以演变而得.现在我们来看例4.例4
如图4,已知:∠AOB在平面α内,∠AOB=60°,PO是平面α的一条斜线段,∠POA=∠POB=45°,PP′⊥平面α于P′,且PP′=3.求:(1)PO与平面α所成的角的正弦;(2)PO的长.师:我们如何利用上节课所讲的两个基本题来解这题.生:因∠POA=∠POB,所以OP′是∠AOB的平分线,∠POP′相当于θ1,θ2=30°,θ=45°,由cosθ1·cos30°=cos师:在我们脑中如果“储存”许多基本题,那么在我们解有关综合题时,就能“得心应手”.所以在平时我们一定要注意对基本题的理解、掌握,解这题的思路就是一个典型.下面我们来看例5.(1)直线MN是异面直线A1B和B1D1的公垂线;(2)若这个正方体的棱长为a,求异面直线A1B和B1D1的距离.师:我们是在讲三垂线定理及其逆定理应用时讲这个例题的.所以我们想法用三垂线定理或它的逆定理来证明这一题.要用三垂线定理首先要确定对于哪一个平面来用三垂线定理.生:对于平面A1B1C1D1来用三垂线定理.师:这时MN是平面A1B1C1D1的斜线,我们如何作平面A1B1C1D1的垂线呢?生:作MP⊥A1B1于P,又因为D1A1⊥平面A1ABB1,所以A1D1⊥PM,故PM⊥平面A1B1C1D1.师:对于平面A1B1C1D1来说,MP是垂线,MN是斜线,NP是MN在平面A1B1C1D1上的射影.我们要证MN⊥B1D1,只要证PN⊥B1D1即可.在正方形A1B1C1D1中,我们知道
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 立医院二零二四年度医用控温仪采购:项目合同
- 建行云贷合同模板
- 2024年度茶苗及成品物流配送服务合同
- 独家研发协议合同范例
- 二零二四年商业保险合同权益2篇
- 员工生日福利方案一起样本(4篇)
- 瓶盖委托设计合同范例
- 2024年度农产品销售:大蒜购销与市场推广合同
- 气瓶充装配电室安全管理制度(4篇)
- 加盟分公司合同协议3篇
- 2024年比特币投资项目发展计划
- 农业行业:农业众筹模式推广方案
- 成人手术后疼痛评估与护理-中华护理学会团体标准2023 2
- 2025届高考语文复习:古诗文默写分类练习(含答案)
- 2024-2030年中国功能材料行业市场发展现状及发展趋势与投资前景预测研究报告
- 电子商务案例分析大作业35淘宝案例分析
- DB61T1521.5-2021奶山羊养殖技术规范 第5部分:后备羊培育
- 老年糖尿病诊疗指南(2024版)培训试题及答案
- 中国心力衰竭基层诊疗与管理指南(2024年版)
- 浙西南民间音乐智慧树知到答案2024年丽水学院
- 跨学科实践活动6 调查家用燃料的变迁与合理使用-2024-2025学年九年级化学人教版上册
评论
0/150
提交评论