版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11页共12页《两个平面平行的判定和性质》课堂教学实录(一)一、素质教育目标(一)知识教学点1.两个平面平行的定义.2.两个平面的位置关系及画法.3.两个平面平行的判定.(二)能力训练点1.理解并掌握两个平面平行的定义.2.掌握两个平面的位置关系应用了类比的方法,体现了分类的数学思维方法.3.会画平行或相交平面的空间图形,并用字母或符号表示,进一步培养学生的空间想象能力.4.掌握两个平面的判定定理的证明,进一步培养学生严密的逻辑思维能力.(三)德育渗透点让学生认识研究两个平面的位置关系以及掌握和应用两个平面平行的判定是实际生产的需要,体现了理论联系实践的原则,并更好地培养学生分析问题与解决问题的能力.二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面的位置关系;掌握两个平面平行的判定.2.教学难点:掌握两个平面平行的判定定理的证明及其应用.3.教学疑点:正确理解并应用两个平面平行的判定定理时,要注意定理中的关键词:相交.三、课时安排1.12两个平面的位置关系及1.13两个平面平行的判定和性质这两个课题调整安排为2课时.本节课为第一课时,主要讲解两个平面的位置关系及两个平面平行的判定.四、教与学过程设计(一)两个平面的位置关系师:让我们一起来观察:教室的正面和背面、左面和右面的墙面有没有公共点?教室的正面和侧面的墙面呢?思考问题:两个平面的位置关系可分为几种情况?学生通过直观观察得出结论:两种,平行或相交.师:什么是平行的平面?生:两个平面没有公共点叫做两个平面互相平行.师:能否再举出一些两个平面平行和相交的实例?(P.35中练习1.)学生自由回答,教师点评.师:从上面的例子,我们知道:两个平面的位置关系同平面内两条直线的位置关系相类似,可从有无公共点来区分.若两个平面有不共线的两个公共点,则由公理3可知这两个平面必然重合为一个平面;若两个平面有一个公共点,则由公理2可知这两个平面相交于过这个点的一条直线;若两个平面没有公共点,则这两个平面互相平行.由此得出不重合的两个平面的位置关系:两个平面平行——没有公共点;两个平面相交——有一条公共直线(至少有一个公共点).师:那么如何画出并表示两个平行平面和两个相交平面呢?师边画边答:画两个平行平面的要点是:表示平面的平行四边形的对应边相互平行.如图1—102.画两个相交平面的要点是:先画表示两个平面的平行四边形的相交两边,再画表示两个平面交线的线段.成图时注意不相交的直线相互平行且等长,不可见的部分画虚线或不画.如图1—103.学生练习(P.35中练习2):画两个平行平面和分别在这两个平面内的两条平行直线,再画一个经过这两条平行直线的平面.如图1—104,α∥β,a∥b,a<α,b<β,a<γ,b<γ.(二)两个平面平行的判定师:根据前一小节平面平行的定义,我们来判断两个互逆命题的正误,并说明理由(幻灯显示).命题1.如果两个平面平行,那么其中一个平面内的所有直线一定都和另一个平面平行.命题2.如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.生:命题1是正确的.因为在这些直线中如果有一条和另一个平面有公共点,这点也必是这两个平面的公共点.那么这两个平面就不可能平行了.命题2也是正确的.因为如果这两个平面有公共点,那么在另一个平面内通过这点的直线就不可能平行于另一个平面.师:通过上面的讨论我们知道:两个平面平行的问题可转化为一个平面内直线和另一个平面平行的问题.实际上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一个平面,只需要在一个平面内有两条相交直线都平行于另一个平面.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.师:我们知道,一个定理只有经过证明才能说明它的正确性并直接应用,下面我们来证明这个定理.已知:在平面β内,有两条相交直线a、b和平面α平行.求证:β∥α.师分析:要证明这个定理,先思考几个问题(提出问题并启发学生得出结论)(幻灯显示).问题1:如果平面α与平面β不平行,那么它们的位置关系怎样?(相交).问题2:若平面α与平面β相交,那么交线与平行于平面α的直线a和b各有什么关系?(平行).问题3:相交直线a和b都与交线平行合理吗?(不合理,与平行公理矛盾).师:总结得出证明定理应该根据定义,利用反证法,让学生写出它的证明过程.证明:假设α∩β=c.a∥α,a∩β,a∥c,同理b∥c.a∥b,这与题设a与b相交矛盾α∥β.师:在实际生活中,也经常利用这个判定定理判断两个平面平行.如在判断一个平面是否水平时,把水准器放在这个平面上交叉放两次,如果水准器的气泡都是居中的,就可以判定这个平面和水平面平行.下面请同学们完成例1和练习.(三)练习例1垂直于同一直线的两个平面平行.已知:α⊥AA',β⊥AA',求证:α∥β.师提示:要证明两个平面平行,有两种方法:一是利用定义;二是利用判定定理,也是较常用的一种方法.因此利用判定定理证明例1的关键是:如何构造一个平面内的两相交直线都平行于另一个平面?证明:设经过直线AA'的两个平面γ,δ分别与平面α、β交于直线a,a'和b,b'.∵AA'⊥α,AA'⊥β,∴AA⊥a,AA'⊥a',∴a‖a',则a'∥α.同理,b'∥α.又∵a'∩b'=A'∴α∥β.师:这个例题的结论可与定理“垂直于同一平面的两条直线平行”联系起来记忆,也可作为判定两个平面平行的一种方法.练习:判断下列命题的正误(幻灯显示).1.垂直于同一直线的两直线平行.2.分别在两个平行平面内的两条直线都平行(P.37中练习1).3.如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行(P.38中练习2<1>).4.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行(P.38中练习2<2>).答:1.错,这两条直线还可能相交或异面.2.错,这两条直线还可能异面,但不会相交.3.错,反例如图1—107.4.对.(四)总结本节课我们学习了两个平面平行的定义;两个平面的位置关系:平行或相交;两个平面平行的判定.掌握两个平面平行的判定的研究可以转化为线线平行、线面平行的研究.五、作业P.38中习题五1、2、3.补充:1.a、b为异面直线,a∥α,b∥α,a∥β,b∥β.求证:α∥β.θ2,∠AOD=θ3.求证:cos·θ3=cosθ1·cosθ2.《两个平面平行的判定和性质》课堂教学实录(二)一、素质教育目标(一)知识教学点1.两个平面平行的性质.2.两个平行平面的公垂线、公垂线段、距离的定义.(二)能力训练点1.利用转化的思维方法掌握和应用两个平面平行的性质.2.应用类比的方法理解并掌握两个平行平面的公垂线、公垂线段、距离的定义.二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:掌握两个平行平面的性质及其应用.3.教学疑点:正确掌握如何将两个平面平行的性质的研究转化为线线平行、线面平行、线面垂直的研究.三、课时安排1.12两个平面的位置关系及1.13两个平面平行的判定和性质这两个课题调整安排为2课时.本节课为第二课时,主要讲解两个平面平行的性质.四、教与学过程设计(一)复习两个平面的位置关系及两个平面平行的判定(一)复习两个平面的位置关系及两个平面平行的判定师:两个平面的位置关系有哪几种?生:平行或相交.师:两个平面平行的判定方法有哪几种?生:第一种可根据定义(一般用反证法).b=0,a∥β,b∥β,则α∥β.第三种可根据例1的结论,即:如图1-110,若α⊥AA',β⊥AA',则α∥β.(二)两个平面平行的性质师:今天我们研究两个平面平行的性质.根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1:若α∥1.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.已知:α∥β,γ∩α=a,γ∩β=b.求证:a∥b.师:要证明这个定理,有两种证法:直接证法和间接证法(即反证法).下面请同学们书写直接证法,口述反证法.生:(直接证法.)∵α∥β,∴α与β没有公共点.∴a∥b.(反证法.)假设直线a不平行于直线b,因为直线a、b在同一个平面γ内,公共点P,即α,β相交,这与“α∥β”矛盾,所以假设不成立,即a∥b.师:这个结论可作为性质2:若α∥β,α∩γ=a,β∩γ=b,则a∥b.下面我们再看一个例题.2.例题例2一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,l⊥α,l∩α=A.求证:l⊥β.师提问:证明直线与平面垂直的方法有几种?师与生共同回忆:方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.比较几种方法,我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.因为直线b是平面β内的任意一条直线,所以l⊥β.师:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l⊥β.3.两个平行平面的公垂线、公垂线段和距离师:象性质3这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图1—113,α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得4.练习(幻灯显示)(1)如图1—114,平面α∥β,△ABC在β内,P是α、β间的一点,线段PA、PB、PC分别交α于A'、B'、C',若BC=12cm,AC=50cm,AB=13cm,且PA'∶PA=2∶3,则△师提示:△ABC∽△A'B'C',且相似比为3∶2.BB'⊥β于B',若AC⊥AB,AC与β成60°角,AC=8cm,B'师提示:可求A'C=4cm,又可证AB⊥平面AA'C,且四边形AA'B'B为矩形,∴AB=A'B',AB∥A'B'.∴A'B'⊥平面AA'C,从而A'B'⊥A'C.在Rt△A'B'C中,(3)(P.38中练习3)夹在两个平行平面间的平行线段相等.已知:如图1—116,α∥β,AB∥CD,A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,∴过AB、CD的平面γ与平面α和β分别交于AC'和BD.∵α∥β,∴BD∥AC.∴四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年常用集体劳动协议样式
- 2024特定债权质押担保协议模板
- 2024年常用国际货物运输协议样式
- 2023届高考化学鲁科版一轮复习学案-第七章第2课时 化学平衡状态 化学平衡常数
- 趣味数学老师课程设计
- 软件重构课程设计
- 2024年基础设施项目融资协议
- 2024年电商物流服务战略合作协议
- 2024年外贸代理业务抽成协议模板
- 2024年房产按揭借款协议示例
- 涵洞沉降压浆处理方案
- 上学期烹饪兴趣组活动记录表
- 《出纳实务》教案
- 开关电源变压器铁芯磁滞回线测量
- 口腔诊所器材清单
- 第四节 烤瓷熔附金属全冠的制作工艺流程
- 建筑施工现场安全警示牌标示(标志图片)
- 设计单位考察评价表
- 交通银行企业文化理念
- aspcms后台操作说明书
- 免疫学发展简史及展望PPT课件
评论
0/150
提交评论