下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1§6.2排列与组合6.2.1排列学习目标1.理解并掌握排列的概念.2.能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.解(1)票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B打电话与B给A打电话是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题:(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程eq\f(x2,a2)+eq\f(y2,b2)=1?可以得到多少个焦点在x轴上的双曲线方程eq\f(x2,a2)-eq\f(y2,b2)=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程eq\f(x2,a2)+eq\f(y2,b2)=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线eq\f(x2,a2)-eq\f(y2,b2)=1中,不管a>b还是a<b,方程eq\f(x2,a2)-eq\f(y2,b2)=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、画树形图写排列例2将A,B,C,D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四,试用树形图列出所有可能的排法.解树形图(如图):由树形图知,所有排法有BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.反思感悟树形图的画法(1)确定首位,以哪个元素在首位为分类标准进行确定首位.(2)确定第二位,在每一个分支上再按余下的元素,在前面元素不变的情况下定第二位并按顺序分类.(3)重复以上步骤,直到写完一个排列为止.跟踪训练2(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.解(1)由题意作树形图,如图.故所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作树形图,如图.故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个.三、简单的排列问题例3(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解(1)从7本不同的书中选3本送给3名同学,相当于从7个元素中任取3个元素的一个排列,所以共有7×6×5=210(种)不同的送法.(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理,共有7×7×7=343(种)不同的送法.反思感悟对于简单的排列问题,其解题思路可借助分步乘法计数原理进行,即采用元素分析法或位置分析法求解.跟踪训练3(1)沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备不同的火车票的种数为()A.15B.30C.12D.36〖答案〗B〖解析〗对于两个大站A和B,从A到B的火车票与从B到A的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,故不同的火车票有6×5=30(种).(2)3盆不同品种的花排成一排,共有________种不同的排法.〖答案〗6〖解析〗共有3×2×1=6(种)不同的排法.1.(多选)下面问题中,不是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合〖答案〗BCD〖解析〗选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.从甲、乙、丙三人中选两人站成一排的所有站法为()A.甲乙、乙甲、甲丙、丙甲B.甲乙丙、乙丙甲C.甲乙、甲丙、乙甲、乙丙、丙甲、丙乙D.甲乙、甲丙、乙丙〖答案〗C〖解析〗从三人中选出两人,而且要考虑这两人的顺序,所以有如下6种站法:甲乙、甲丙、乙甲、乙丙、丙甲、丙乙.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为()A.5B.10C.20D.60〖答案〗C〖解析〗不同的送书种数为5×4=20.4.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.〖答案〗245.有8种不同的菜种,任选4种种在不同土质的4块地里,有________种不同的种法.〖答案〗1680〖解析〗将4块不同土质的地看作4个不同的位置,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训机构学生完整协议书
- 运营管理合同
- 医疗器械合作协议书范本
- 《金融科技应用基础》课件-第三章 区块链技术在金融中的应用
- 奶茶店2024年度加工合作协议
- 产科护理质量持续改进
- 基于人工智能的智能医疗系统2024年度研发合同
- 《成功的自我介绍》课件
- 公路工程安全质量管理活动实施方案
- 租房在合同期内能不能涨房租
- 部编版五年级语文上册期末快乐读书吧-附答案
- Module8Unit1WeregoingtovisitHainan(课件)英语四年级上册
- 北斗应用设备项目市场营销方案
- 安全标兵申报材料
- 混凝土搅拌站安装指导工艺课件
- 14普罗米修斯 一等奖创新教学设计
- 工程造价师招聘模板范本
- 保证书(女方出轨)
- 第十四章精神科护理相关的伦理和法律
- 洗车机操作保养规程
- 电杆套筒基础施工方案
评论
0/150
提交评论