版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE17.4.2超几何分布学习目标1.理解超几何分布.2.了解二项分布同超几何分布的区别与联系.知识梳理知识点超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2.均值:E(X)=.题型探究探究一超几何分布的辨析例1.盒中共有9个球,其中有4个红球,3个黄球和2个白球,这些球除颜色外完全相同.(1)若用随机变量X表示任选4个球中红球的个数,则X服从超几何分布,其参数为()A.N=9,M=4,n=4 B.N=9,M=5,n=5C.N=13,M=4,n=4 D.N=14,M=5,n=5(2)若用随机变量Y表示任选3个球中红球的个数,则Y的可能取值为________.(3)若用随机变量Z表示任选5个球中白球的个数,则P(Z=2)=________.反思感悟判断一个随机变量是否服从超几何分布,应看三点(1)总体是否可分为两类明确的对象.(2)是否为不放回抽样.(3)随机变量是否为样本中其中一类个体的个数.跟踪训练1.从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.()探究二超几何分布的概率例2.袋中有8个球,其中5个黑球,3个红球,从袋中任取3个球,求取出的红球数X的分布列,并求至少有一个红球的概率.反思感悟求超几何分布的分布列的步骤跟踪训练2.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试.试求出选3名同学中,至少有一名女同学的概率.探究三超几何分布与二项分布间的关系例3.某人有5把钥匙,其中只有一把能打开办公室的门,一次他醉酒后拿钥匙去开门.由于看不清是哪把钥匙,他只好逐一去试.若不能开门,则把钥匙扔到一边,记打开门时试开门的次数为ξ,试求ξ的分布列,并求他至多试开3次的概率.反思感悟二项分布与超几何分布的关系在n次试验中,某事件A发生的次数X可能服从超几何分布或二项分布.区别①当这n次试验是n重伯努利试验时(如有放回摸球),X服从二项分布;②当n次试验不是n重伯努利试验时(如不放回摸球),X服从超几何分布联系在不放回n次试验中,如果总体数量N很大,而试验次数n很小,此时超几何分布可近似转化成二项分布.跟踪训练3.生产方提供50箱的一批产品,其中有2箱不合格产品,采购方接收该批产品的原则是:从该批产品中任取5箱产品进行检验,若至多有1箱不合格产品,便接收该批产品,问该批产品被接收的概率是多少?课堂小结1.知识清单:(1)超几何分布的概念及特征.(2)超几何分布的均值.(3)超几何分布与二项分布的区别与联系.2.方法归纳:类比.3.常见误区:超几何分布与二项分布混淆,前者是不放回抽样,后者是有放回抽样.当堂检测1.盒中有4个白球,5个红球,从中任取3个球,则取出1个白球和2个红球的概率是()A.eq\f(37,42) B.eq\f(17,42)C.eq\f(10,21) D.eq\f(17,21)2.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=()A.eq\f(4,21) B.eq\f(9,21)C.eq\f(6,21) D.eq\f(5,21)3.把X,Y两种遗传基因冷冻保存,若X有30个单位,Y有20个单位,且保存过程中有2个单位的基因失效,则X,Y两种基因各失效1个单位的概率是().A.eq\f(24,49) B.eq\f(1,25) C.eq\f(1,30) D.eq\f(1,600)4.从3台甲型彩电和2台乙型彩电中任选2台,其中两种型号都齐全的概率是__________.5.50张彩票中只有2张中奖票,今从中任取n张,为了使这n张彩票里至少有一张中奖的概率大于0.5,n至少为多少?▁▃▅▇█参*考*答*案█▇▅▃▁知识点超几何分布1.eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N))2.eq\f(nM,N)题型探究例1.〖解析〗(1)根据超几何分布的定义知,N=9,M=4,n=4.(2)由于只选取了3个球,因此随机变量Y的所有可能取值为0,1,2,3.(3)由古典概型概率计算公式知,P(Z=2)=eq\f(C\o\al(2,2)C\o\al(3,7),C\o\al(5,9))=eq\f(5,18).〖答案〗(1)A(2)0,1,2,3(3)eq\f(5,18)跟踪训练1.√例2.解:ξ的所有可能取值为1,2,3,4,5,且P(ξ=1)=eq\f(C\o\al(1,1),C\o\al(1,5))=eq\f(1,5),P(ξ=2)=eq\f(C\o\al(1,4)C\o\al(1,1),C\o\al(1,5)C\o\al(1,4))=eq\f(1,5),P(ξ=3)=eq\f(C\o\al(1,4)C\o\al(1,3)C\o\al(1,1),C\o\al(1,5)C\o\al(1,4)C\o\al(1,3))=eq\f(1,5),P(ξ=4)=eq\f(C\o\al(1,4)C\o\al(1,3)C\o\al(1,2)C\o\al(1,1),C\o\al(1,5)C\o\al(1,4)C\o\al(1,3)C\o\al(1,2))=eq\f(1,5),P(ξ=5)=eq\f(C\o\al(1,4)C\o\al(1,3)C\o\al(1,2)C\o\al(1,1)C\o\al(1,1),C\o\al(1,5)C\o\al(1,4)C\o\al(1,3)C\o\al(1,2)C\o\al(1,1))=eq\f(1,5).因此ξ的分布列为ξ12345Peq\f(1,5)eq\f(1,5)eq\f(1,5)eq\f(1,5)eq\f(1,5)由分布列知P(ξ≤3)=P(ξ=1)+P(ξ=2)+P(ξ=3)=eq\f(1,5)+eq\f(1,5)+eq\f(1,5)=eq\f(3,5).跟踪训练2.解:以50箱为一批产品,从中随机抽取5箱,用X表示“5箱中的不合格产品的箱数”,则X服从参数N=50,M=2,n=5的超几何分布,这批产品被接收的条件是任取的5箱中没有不合格或只有1箱不合格,所以被接收的概率为:P(X≤1)=P(X=0)+P(X=1)=eq\f(C\o\al(0,2)C\o\al(5,48),C\o\al(5,50))+eq\f(C\o\al(1,2)C\o\al(4,48),C\o\al(5,50))=eq\f(243,245)≈99.2%.所以该批产品被接收的概率是99.2%.例3.解:X=0,1,2,3,X=0表示取出的3个球全是黑球,P(X=0)=eq\f(C\o\al(3,5),C\o\al(3,8))=eq\f(10,56)=eq\f(5,28),同理P(X=1)=eq\f(C\o\al(1,3)·C\o\al(2,5),C\o\al(3,8))=eq\f(30,56)=eq\f(15,28),P(X=2)=eq\f(C\o\al(2,3)·C\o\al(1,5),C\o\al(3,8))=eq\f(15,56),P(X=3)=eq\f(C\o\al(3,3),C\o\al(3,8))=eq\f(1,56).∴X的分布列为X0123Peq\f(5,28)eq\f(15,28)eq\f(15,56)eq\f(1,56)至少有一个红球的概率为P(X≥1)=1-eq\f(5,28)=eq\f(23,28).跟踪训练3.解:设选出的女同学人数为X,则X的可能取值为0,1,2,3,且X服从参数为N=10,M=4,n=3的超几何分布,于是选出的3名同学中,至少有一名女同学的概率为:P(X≥1)=P(X=1)+P(X=2)+P(X=3)=eq\f(C\o\al(1,4)C\o\al(2,6),C\o\al(3,10))+eq\f(C\o\al(2,4)C\o\al(1,6),C\o\al(3,10))+eq\f(C\o\al(3,4)C\o\al(0,6),C\o\al(3,10))=eq\f(5,6)或P(X≥1)=1-P(X=0)=1-eq\f(C\o\al(0,4)C\o\al(3,6),C\o\al(3,10))=eq\f(5,6).当堂检测1.〖解析〗根据题意知,该问题为古典概型,∴P=eq\f(C\o\al(1,4)C\o\al(2,5),C\o\al(3,9))=eq\f(10,21).〖答案〗C2.〖解析〗P(X=3)=eq\f(C\o\al(3,5)C\o\al(1,5),C\o\al(4,10))=eq\f(5,21).〖答案〗D3.〖答案〗A〖解析〗由题意知服从超几何分布,则X,Y两种基因各失效1个单位的概率为eq\f(C\o\al(1,30)C\o\al(1,20),C\o\al(2,50))=eq\f(24,49).4.〖答案〗eq\f(3,5)〖解析〗由题意知服从超几何分布,其中两种型号都齐全的概率为eq\f(C\o\al(1,3)C\o\al(1,2),C\o\al(2,5))=eq
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业用深水井挖掘施工合同3篇
- 工业楼房转租租赁合同3篇
- 安装伸缩缝施工合同3篇
- 改过自新的学生决心3篇
- 改进合同协议共筑美好未来3篇
- 录音授权合同范本
- 体育馆楼顶广告字施工合同
- 乳制品品控员聘用合同协议
- 学校防火门安装合同定案
- 沥青路面铺设耐久性能合同
- 某市自来水厂工艺设计
- 2023年公务员体检表
- GB/T 9115-2010对焊钢制管法兰
- 西南林业大学宿舍楼环评报告
- 碾压式土石坝施工技术规范 SDJ 213-83
- 2022年高考广东卷物理试题(含答案)
- 微型营养评估MNA表完整优秀版
- 加油站消防应急演练方案
- 左右江水土流失及石漠化综合治理项目实施方案
- 279565会计学基础(第五版)配套实训参考答案
- 鸡毛信说课PPT课件
评论
0/150
提交评论