2025年高考数学专项题型点拨训练之导数_第1页
2025年高考数学专项题型点拨训练之导数_第2页
2025年高考数学专项题型点拨训练之导数_第3页
2025年高考数学专项题型点拨训练之导数_第4页
2025年高考数学专项题型点拨训练之导数_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年高考数学专项题型点拨训练导数【题型一】公切线求参【题型二】“过点”切线条数【题型三】切线法解题【题型四】恒成立求参【题型五】能成立求参【题型六】零点与隐零点【题型七】双变量问题【题型八】构造函数求参【题型九】极值点偏移导数在新结构试卷中的考察重点偏向于小题,原属于导数的压轴题有所改变,但导数在高考中的考察依然属于重点,题型很多,结合的内容也偏多,比如常出现的比较大小和恒成立问题等都结合着构造函数的思想,而如何构造就需要学生对出题人的出题思路再根据构造函数的思维从而进行推理,是不简单的知识点。易错点:对数单身狗、指数找基友在处理含对数的等式、不等式时,通常要将对数型的函数“独立分离”出来,这样再对新函数求导时,就不含对数了,从而避免了多次求导.这种让对数“孤军奋战”的变形过程,俗称之为“对数单身狗”.目标希望是这样的:由;在处理含指数的等式、不等式时,通常要将指数型函数与其它函数(乘或除)结合起来,这样再对新函数求导时,就避免了多次求导.俗称之为“指数找朋友”或“指数常下沉”.乘法:;除法:.例已知当时,恒成立,则实数的取值范围是.变式1:已知函数.⑴当时,求曲线在处的切线方程;⑵若当时,,求的取值范围.【题型一】公切线求参(1)以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:①求出函数f(x)的导数f′(x);②求切线的斜率f′(x0);③写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程.【例1】(2024·山西·模拟预测)已知函数若对任意,曲线在点和处的切线互相平行或重合,则实数(

)A.0 B.1 C.2 D.3【例2】(2024·全国·模拟预测)已知函数的图象上存在不同的两点,使得曲线在点处的切线都与直线垂直,则实数的取值范围是(

)A. B. C. D.【变式1】(2024·全国·模拟预测)曲线在处的切线与曲线相切于点,若且,则实数的值为.【变式2】(2024·四川泸州·三模)设函数,.(1)求函数的单调区间;(2)若总存在两条直线和曲线与都相切,求的取值范围.【变式3】(2024·陕西安康·模拟预测)已知函数.(1)求曲线与的公切线的条数;(2)若,求的取值范围.【题型二】“过点”切线条数导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.【例1】(2024·山西吕梁·二模)若曲线在点处的切线过原点,则.【例2】(2024·北京海淀·一模)已知,函数的零点个数为,过点与曲线相切的直线的条数为,则的值分别为(

)A. B. C. D.【变式1】(2024·全国·模拟预测)若曲线(且)有两条过坐标原点的切线,则的取值范围为(

)A. B. C. D.【变式2】(2024·全国·模拟预测)过坐标原点作曲线的切线,则切线共有(

)A.1条 B.2条 C.3条 D.4条【题型三】切线法解题涉及到交点或者零点的小题题型,函数图像通过求导,大多数属于凸凹型函数,则可以用切线分隔(分界)思维来求解。切线,多涉及到“过点”型切线,【例1】(2024·黑龙江双鸭山·模拟预测)已知函数.(1)若的图象在点处的切线与直线垂直,求的值;(2)讨论的单调性与极值.【例2】(2024·全国·模拟预测)已知函数,且曲线在点处的切线方程为.(1)求实数,的值;(2)证明:函数有两个零点.【变式1】(2024·四川攀枝花·三模)已知函数.(1)当时,求函数在处的切线方程;(2)设函数的导函数为,若,证明:.【变式2】(2024·广东深圳·二模)已知函数,是的导函数,且.(1)若曲线在处的切线为,求k,b的值;(2)在(1)的条件下,证明:.【题型四】恒成立求参不等式的恒成立求参数问题,不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图像在上方即可);③讨论最值或恒成立.涉及到不等式整数解的问题时,要充分利用导数研究函数单调性,结合单调性考查整数解相邻整数点函数值的符号问题,列不等式求解,考查运算能力与分析问题的能力.在研究函数时用导数求极值研究极值时,无法正常求出极值点,可设出极值点构造等式或者方程作分析,进行合适的等量代换或者合适的换元消元消参,考查了分析推理能力,运算能力,综合应用能力,难度很大.【例1】(2024·全国·模拟预测)不等式在上恒成立,则实数a的取值范围是.【例2】(2024·湖南衡阳·模拟预测)已知函数是偶函数,不等式恒成立,则b的最大值为.【例3】(2024·江苏盐城·模拟预测)已知函数.(1)讨论的单调性;(2)若不等式恒成立,求的取值范围.【变式1】(2024·湖南衡阳·模拟预测)已知函数,函数.(1)若直线与函数交于点A,直线与函数交于点B,且函数在点A处的切线与函数在点B处的切线相互平行,求a的取值范围;(2)函数在其定义域内有两个不同的极值点,,且,存在实数使得不等式恒成立,求实数的取值范围.【变式2】(2024·全国·模拟预测)已知函数,.(1)证明:.(2)若恒成立,求实数的取值范围.【题型五】能成立求参对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【例1】已知函数.(1)二次函数,在“①曲线,有1个交点;②”中选择一个作为条件,另一个作为结论,进行证明;(2)若关于x的不等式在上能成立,求实数m的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【例2】已知函数.(1)若,求曲线在处的切线方程;(2)若关于的不等式在上能成立,求实数的取值范围.【变式1】已知函数.(1)当时,求曲线在点处的切线方程;(2)若存在正实数t,使得当时,有能成立,求的值.【变式2】设函数.(1)求在点处的切线方程;(2)求函数的单调区间;(3)当时,使得不等式能成立的实数的取值范围.【题型六】零点与隐零点隐零点问题是指对函数的零点设而不求,通过一种整体代换和过渡,再结合题目条件最终解决问题;极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,隐零点与极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,难度大.解题思路:(1)用函数零点存在定理判定导函数零点的存在性,列出零点方程f′(x0)=0,并结合f′(x)的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数f′(x)的正负,进而得到f(x)的最值表达式.(3)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.【例1】已知函数f(x)=(x-1)ex-ax的图象在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证:f(x)有唯一的极值点x0,且f(x0)>-eq\f(3,2).【例2】已知f(x)=ex+1-eq\f(2,x)+1,g(x)=eq\f(lnx,x)+2.(1)求g(x)的极值;(2)当x>0时,证明:f(x)≥g(x).【变式1】已知实数a满足a≥eq\r(e)+eq\f(1,\r(e))-2,且函数f(x)=lnx+eq\f(x2,2)-(a+2)x恰有一个极小值m和极大值M,求m-M的最大值.【变式2】已知函数f(x)=x-alnx-1(a∈R).(1)当a=1时,求证:f(x)≥0;(2)若x=1是f(x)唯一的零点,求f(x)的单调区间.【题型七】双变量问题一般地,若时,涉及到双变量的不等式的证明,函数的最值问题可以使用比值换元,令,将问题转化为关于的函数,利用导数进行求解.【例1】(2024·广东佛山·二模)已知.(1)当时,求的单调区间;(2)若有两个极值点,,证明:.【例2】(2024·广东·二模)已知.(1)求的单调区间;(2)函数的图象上是否存在两点(其中),使得直线与函数的图象在处的切线平行?若存在,请求出直线;若不存在,请说明理由.【例3】(2024·四川·模拟预测)已知函数.(1)当时,求曲线在点处的切线方程;(2)设是函数的两个零点,求证:.【变式1】(2024·四川德阳·二模)已知函数,(1)当时,讨论的单调性;(2)若函数有两个极值点,求的最小值.【变式2】(2024·全国·模拟预测)已知函数,.(1)若存在零点,求a的取值范围;(2)若,为的零点,且,证明:.【变式3】(2024高三·全国·专题练习)已知函数为实数.(1)讨论函数的极值;(2)若存在满足,求证:.【题型八】构造函数求参1.构造函数法求解函数解析式,利用导数研究函数增减性,常用以下方法:(1)利用含导数方程还原原表达式需要结合导数四则运算特征,如本题中同乘移项后就得到除法对应导数公式;(2)利用导数研究函数增减性,如遇导数不能判断正负的情况下,往往需要再次求导,通过二阶导数判断一阶导数的正负,再通过一阶导数的正负判断原函数的增减.2.几种导数的常见构造:对于,构造若遇到,构造对于,构造对于,构造对于或,构造对于,构造对于,构造【例1】(2024·浙江嘉兴·二模)已知定义在上的函数满足,且,则(

)A. B.C. D.【例2】(23-24高二下·四川宜宾·阶段练习)已知函数的定义域为,对任意,有,则不等式的解集是(

)A. B. C. D.【变式1】(23-24高二下·广东东莞·阶段练习)已知为函数的导函数,当时,有恒成立,则下列不等式一定成立的是(

)A. B.C. D.【变式2】(23-24高二下·四川眉山·期中)已知函数的导函数为,对任意的正数,都满足,则下列结论正确的是(

)A. B.C. D.【题型九】极值点偏移(1)(对称化构造法)构造辅助函数:对结论x1+x2>(<)2x0型,构造函数F(x)=f(x)-f(2x0-x);对结论x1x2>(<)xeq\o\al(2,0)型,构造函数F(x)=f(x)-f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x\o\al(2,0),x))),通过研究F(x)的单调性获得不等式.(2)(比值代换法)通过代数变形将所证的双变量不等式通过代换t=eq\f(x1,x2)化为单变量的函数不等式,利用函数单调性证明.【例1】(2024·湖南邵阳·一模)已知函数.(1)讨论函数的单调性;(2)当时,方程有三个不相等的实数根,分别记为.①求的取值范围;②证明.【例2】(2022·全国·模拟预测)设函数.(1)若,求函数的最值;(2)若函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论