![数学示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第四课时)_第1页](http://file4.renrendoc.com/view9/M00/2F/18/wKhkGWcreXeAdigeAAOR68PufCo809.jpg)
![数学示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第四课时)_第2页](http://file4.renrendoc.com/view9/M00/2F/18/wKhkGWcreXeAdigeAAOR68PufCo8092.jpg)
![数学示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第四课时)_第3页](http://file4.renrendoc.com/view9/M00/2F/18/wKhkGWcreXeAdigeAAOR68PufCo8093.jpg)
![数学示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第四课时)_第4页](http://file4.renrendoc.com/view9/M00/2F/18/wKhkGWcreXeAdigeAAOR68PufCo8094.jpg)
![数学示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第四课时)_第5页](http://file4.renrendoc.com/view9/M00/2F/18/wKhkGWcreXeAdigeAAOR68PufCo8095.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精第三章第一节两角和与差的正弦、余弦和正切公式第四课时作者:郑吉星eq\o(\s\up7(),\s\do5(整体设计))教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具.通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律,通过推导还让学生加深理解了高中数学由一般到特殊的化归思想.因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式的推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.课时安排1课时eq\o(\s\up7(),\s\do5(教学过程))导入新课思路1。(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sinα=eq\f(3,5),α∈(eq\f(π,2),π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.推进新课eq\b\lc\\rc\(\a\vs4\al\co1(新知探究))eq\b\lc\\rc\(\a\vs4\al\co1(提出问题))①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写)②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C2α公式中,还有其他表示形式吗?④细心观察二倍角公式的结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin()=2sin()cos(),cos()=cos2()-sin2().⑦思考过公式的逆用吗?想一想C2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα吗?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化,教师再与学生一起集体订正黑板上的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sinαcosβ+cosαsinβ⇒sin2α=2sinαcosα(S2α);cos(α+β)=cosαcosβ-sinαsinβ⇒cos2α=cos2α-sin2α(C2α);tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ)⇒tan2α=eq\f(2tanα,1-tan2α)(T2α).这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin2α+cos2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.sin2α=2sinαcosαS2αcos2α=cos2α-sin2αC2αtan2α=T2αcos2α=2cos2α-1cos2α=1-2sin2α这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征并记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角.二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三"字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S2α),(C2α)中的角α没有限制,都是α∈R。但公式(T2α)需在α≠eq\f(1,2)kπ+eq\f(π,4)和α≠kπ+eq\f(π,2)(k∈Z)时才成立,这一条件限制要引起学生的注意.但是当α=kπ+eq\f(π,2),k∈Z时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,eq\f(α,2)是eq\f(α,4)的二倍,3α是eq\f(3α,2)的二倍,eq\f(α,3)是eq\f(α,6)的二倍,eq\f(π,2)-α是eq\f(π,4)-eq\f(α,2)的二倍等,所有这些都可以应用二倍角公式.例如:sineq\f(α,2)=2sineq\f(α,4)coseq\f(α,4),coseq\f(α,3)=cos2eq\f(α,6)-sin2eq\f(α,6)等等.问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=eq\f(1,2)sin6α,4sineq\f(α,4)coseq\f(α,4)=2(2sineq\f(α,4)coseq\f(α,4))=2sineq\f(α,2),eq\f(2tan40°,1-tan240°)=tan80°,cos22α-sin22α=cos4α,2tanα=tan2α(1-tan2α)等等.问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k∈Z).若cos2α=2cosα,则2cos2α-2cosα-1=0,即cosα=eq\f(1-\r(3),2)(cosα=eq\f(1+\r(3),2)舍去).若tan2α=2tanα,则eq\f(2tanα,1-tan2α)=2tanα,∴tanα=0,即α=kπ(k∈Z).解答:①~⑧(略)eq\b\lc\\rc\(\a\vs4\al\co1(应用示例))思路1例1已知sin2α=eq\f(5,13),eq\f(π,4)〈α〈eq\f(π,2),求sin4α,cos4α,tan4α的值.活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍"的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由eq\f(π,4)〈α〈eq\f(π,2),得eq\f(π,2)〈2α〈π。又∵sin2α=eq\f(5,13),∴cos2α=-eq\r(1-sin22α)=-eq\r(1-\f(5,13)2)=-eq\f(12,13)。于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×eq\f(5,13)×(-eq\f(12,13))=-eq\f(120,169);cos4α=cos[2×(2α)]=1-2sin22α=1-2×(eq\f(5,13))2=eq\f(119,169);tan4α=eq\f(sin4α,cos4α)=(-eq\f(120,169))×eq\f(169,119)=-eq\f(120,119)。点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值:sin15°+cos15°.解:原式=eq\r(sin15°+cos15°2)=eq\r(sin215°+2sin15°cos15°+cos215°)=eq\f(\r(6),2)。点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.若eq\f(cos2α,sinα-\f(π,4))=-eq\f(\r(2),2),则cosα+sinα的值为()A.-eq\f(\r(7),2)B.-eq\f(1,2)C.eq\f(1,2)D.eq\f(\r(7),2)答案:C3.下列各式中,值为eq\f(\r(3),2)的是()A.2sin15°-cos15°B.cos215°-sin215°C.2sin215°-1D.sin215°+cos215°答案:B例2证明eq\f(1+sin2θ-cos2θ,1+sin2θ+cos2θ)=tanθ。活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1"的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予表扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1"的妙用,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=eq\f(sin2θ+1-cos2θ,sin2θ+1+cos2θ)=eq\f(2sinθcosθ+1+1-2cos2θ,2sinθcosθ+1+2cos2θ-1)=eq\f(sinθcosθ+1-cos2θ,sinθcosθ+cos2θ)=eq\f(sinθcosθ+sin2θ,sinθcosθ+cos2θ)=eq\f(sinθcosθ+sinθ,cosθsinθ+cosθ)=tanθ=右.所以,原式成立.方法二:左=eq\f(sin2θ+cos2θ+sin2θ+sin2θ-cos2θ,sin2θ+cos2θ+sin2θ+cos2θ-sin2θ)=eq\f(sin2θ+2sin2θ,sin2θ+2cos2θ)=eq\f(2sinθsinθ+cosθ,2cosθsinθ+cosθ)=tanθ=右.方法三:左=eq\f(1+sin2θ-cos2θ,1+sin2θ+cos2θ)=eq\f(sin2θ+cos2θ+2sinθ·cosθ-cos2θ-sin2θ,sin2θ+cos2θ+2sinθ·cosθ+cos2θ-sin2θ)=eq\f(sinθ+cosθ2-cosθ+sinθcosθ-sinθ,sinθ+cosθ2+cosθ+sinθcosθ-sinθ)=eq\f(sinθ+cosθsinθ+cosθ+sinθ-cosθ,sinθ+cosθsinθ+cosθ+cosθ-sinθ)=eq\f(sinθ+cosθ·2sinθ,sinθ+cosθ·2cosθ)=tanθ=右.点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20°=eq\f(23·sin20°cos20°cos40°cos80°,23·2sin20°)=eq\f(sin160°,16sin20°)=eq\f(sin20°,16sin20°)=eq\f(1,16)。点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.例2在△ABC中,cosA=eq\f(4,5),tanB=2,求tan(2A+2B)的值.活动:解:方法一:在△ABC中,由cosA=eq\f(4,5),0〈A<π,得sinA=eq\r(1-cos2A)=eq\r(1-\f(4,5)2)=eq\f(3,5).所以tanA=eq\f(sinA,cosA)=eq\f(3,5)×eq\f(5,4)=eq\f(3,4),tan2A=eq\f(2tanA,1-tan2A)=eq\f(2×\f(3,4),1-\f(3,4)2)=eq\f(24,7).又tanB=2,所以tan2B=eq\f(2tanB,1-tan2B)=eq\f(2×2,1-22)=-eq\f(4,3)。于是tan(2A+2B)=eq\f(tan2A+tan2B,1-tan2Atan2B)=eq\f(\f(24,7)-\f(4,3),1-\f(24,7)×-\f(4,3))=eq\f(44,117)。方法二:在△ABC中,由cosA=eq\f(4,5),0<A〈π,得sinA=eq\r(1-cos2A)=eq\r(1-\f(4,5)2)=eq\f(3,5)。所以tanA=eq\f(sinA,cosA)=eq\f(3,5)×eq\f(5,4)=eq\f(3,4).又tanB=2,所以tan(A+B)=eq\f(tanA+tanB,1-tanAtanB)=eq\f(\f(3,4)+2,1-\f(3,4)×2)=-eq\f(11,2)。于是tan(2A+2B)=tan[2(A+B)]=eq\f(2tanA+B,1-tan2A+B)=eq\f(2×-\f(11,2),1--\f(11,2)2)=eq\f(44,117).点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练化简eq\f(1+cos4α+sin4α,1-cos4α+sin4α)。解:原式=eq\f(2cos22α+2sin2αcos2α,2sin22α+2sin2αcos2α)=eq\f(2cos2αcos2α+sin2α,2sin2αsin2α+cos2α)=cot2α。eq\b\lc\\rc\(\a\vs4\al\co1(知能训练))已知cosα=eq\f(1,7),cos(α-β)=eq\f(13,14),且0〈β<α〈eq\f(π,2),(1)求tan2α的值;(2)求β.解:(1)由cosα=eq\f(1,7),0<α<eq\f(π,2),得sinα=eq\r(1-cos2α)=eq\r(1-\f(1,7)2)=eq\f(4\r(3),7)。∴tanα=eq\f(sinα,cosα)=eq\f(4\r(3),7)×eq\f(7,1)=4eq\r(3).于是tan2α=eq\f(2tanα,1-tan2α)=eq\f(2×4\r(3),1-4\r(3)2)=-eq\f(8\r(3),47).(2)由0〈β<α<eq\f(π,2),得0〈α-β〈eq\f(π,2).又∵cos(α-β)=eq\f(13,14),∴sin(α-β)=eq\r(1-cos2α-β)=eq\r(1-\f(13,14)2)=eq\f(3\r(3),14).由β=α-(α-β),得cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=eq\f(1,7)×eq\f(13,14)+eq\f(4\r(3),7)×eq\f(3\r(3),14)=eq\f(1,2)。∴β=eq\f(π,3).点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.eq\b\lc\\rc\(\a\vs4\al\co1(作业))课本习题3。1A组15、16、17。eq\b\lc\\rc\(\a\vs4\al\co1(课题小结))1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单的三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.eq\o(\s\up7(),\s\do5(设计感想))1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力"的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深地留在了学生记忆中.本节课的教学设计流程还是比较流畅的.2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.学生会体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.eq\o(\s\up7(),\s\do5(备课资料))一、三角变换中的“一致代换”法在三角变换中,“一致代换”法是一种重要的方法,所谓“一致代换”法,即在三角变换中,化“异角”“异名”“异次”为“同角”“同名”“同次”的方法.它主要包括:在三角函数式中,①如果只含同角三角函数,一般应从变化函数名称入手,尽量化为同名函数,常用“化弦法”;②如果含有异角,一般应从变化角入手,尽量化不同角为同角,变复角为单角;③如果含有异次幂,一般利用升幂或降幂公式化异次幂为同次幂.二、备用习题1.求值:eq\f(1,sin10°)-eq\f(\r(3),cos10°).答案:原式=eq\f(cos10°-\r(3)sin10°,sin10°cos10°)=eq\f(2\f(1,2)cos10°-\f(\r(3),2)sin10°,sin10°cos10°)=eq\f(4sin30°cos10°-cos30°sin10°,2sin10°cos10°)=eq\f(4sin30°-10°,sin20°)=4。2.化简:cos36°cos72°。答案:原式=eq\f(2sin36°cos36°·cos72°,2sin36°)=eq\f(2sin72°cos72°,4sin36°)=eq\f(sin144°,4sin36°)=eq\f(1,4).3.化简:cosαcoseq\f(α,2)coseq\f(α,22)coseq\f(α,23)·…·coseq\f(α,2n-1).答案:先将原式同乘除因式sineq\f(α,2n-1),然后逐次使用倍角公式,则原式=.eq\f(sin2α,2nsin\f(α,2n-1))4.求值:sin6°sin42°sin66°sin78°.答案:原式=sin6°cos48°cos24°cos12°=sin6°cos12°cos24°cos48°=eq\f(24cos6°sin6°cos12°cos24°cos48°,24cos6°)=eq\f(sin96°,24cos6°)=eq
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务在公共服务领域的应用与创新探索
- 2025年达州货运上岗证考试多少道题
- 2025年许昌道路运输从业资格证模拟考试年新版
- 现代办公室管理的国际化视野与实践
- 2025年武汉货运从业资格证考试试题和答案大全
- 2025年白山道路运输从业资格考试下载
- 2025年铁岭道路货运从业资格证考试
- 电子商务平台客服体系建设与用户满意度提升
- 电子商务物流与供应链管理的发展方向
- 现代企业团队建设的创新方法与实践
- 团队协作和领导力
- 奋力前行迎接挑战主题班会课件
- 病毒性肺炎疾病演示课件
- 软星酒店网络规划与设计
- 自然辩证法概论(新)课件
- 基层医疗机构基本情况调查报告
- 幼儿园PPT课件《欢乐的元宵节》
- 住院患者发生管路非计划性拔管应急预案及处理流程应急预案
- 电解槽检修施工方案
- 正常分娩 分娩机制 助产学课件
- 读书分享-精力管理课件
评论
0/150
提交评论