版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
某服装厂生产一种西服和领带,西服每套定价200元,领带每条定价40元,厂方开展促销活动期间,向客户提供两种优惠方法:①买一套西服送一条领带;②西装和领带均按定价的90%付款,某商店到该服装厂购买西服20件,领带若干条.①领带买多少条时,两种优惠方法相同;②购买50条领带时,应采用哪一种方案更省钱.一元一次方程的应用练习1、某时装标价为650元,某女士以5折少30元购得,业主净赚50元,此时装进价为()A.275元B.295元C.245元D.325元2、一件工作,由甲、乙两人合做12小时可以完成,若甲单独做20小时可以完成,现由甲、乙合做4小时后,甲被调走,剩下的部分由乙继续完成,那么乙还需要的时间为()A.12小时B.15小时C.20小时D.30小时3、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去,后来老板按定价减价20%以96元出售,很快就卖掉了,这次销售的盈亏情况为()A.赚6元B.不亏不赚C.亏4元D.亏24元4、某人存入银行10000元,年息为2.25%,利息税是利息的20%,则一年后银行支付给该储户现金________元.5、某校七年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐320册图书,特别值得表扬的是李扬、王州两位同学在父母的支持下各捐献了50册图书,班长统计了全班捐献图书的情况,如下表(被粗心的马小虎用墨水污染了一部分),则捐献7册图书的有________人,捐献8册图书的有_________人.册数4567850人数681526、当时,的值是2,那么当时,的值是_______.7、某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过3千米后,每增加1千米加收2.4元(不足1千米按1千米计算),某人乘坐这种出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程是_________千米.8、有A、B两个圆柱形容器,A容器的底面面积是B容器的底面面积的1.5倍,A容器的水高为1.5cm,B容器是空的,其内壁高为2.5cm,若把A容器内的水倒入B容器,水是否会溢出?9、若干个偶数按每行8个数排成下图.24681012141618202224262830323436384042444648……①图中方框内的9个数的和与中间的数有什么关系?②若小亮所画的方框内9个数的和为360,求方框内右下角的那个数.③如图小霞也圈了斜框里的9个数,已知这9个数的和为198,求斜框的中间的一个数是多少?10、兄弟俩今年的年龄之和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,问哥哥今年几岁?11、A、B两站间的距离为448千米,一列慢车从A站出发,每小时行60千米,一列快东从B站出发,每小时行驶80千米.①两车同时开出,相向而行,出发后多少小时相遇?②两车相向而行,慢车先开出28分钟,快车开出多少小时后两车相遇?③如果两车都从A站向B站,要使两车同时到达,慢车应先出发多少小时?12、公司徐经理从家里开汽车去火车站,如果每小时走50千米,那么比火车开车时间早到15分钟;如果每小时走40千米,那么比火车开车时间迟到15分钟,现打算比火车开车时间早10分钟到达火车站,那么汽车的速度应是多少?13、一出租车起步价是5元,8公里内按起步价收费,8公里以上20公里以内按每增加1公里另收费0.5元;20公里以上按每增加1公里另收费1元,一乘客付出车费21元,问他乘坐多少公里?14、某商店以每3盒16元钱的价格购进一批录音带,又从另外一处以每4盒21元钱的价格购进比前一批数量多一倍的录音带,如果以每3盒元的价格全部出售,可得到所投资20%的利润.求的值.15、某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件3件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?16、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛,竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题扣1分.(1)如果(二)班代表队最后得分142分,那么(二)班代表队回答对了多少道题?(2)(一)班代表队的最后得分能为145分吗?请简要说明理由.一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。流水问题有如下两个基本公式:顺水速度=船速+水速
(V顺=V静+V水)
逆水速度=船速-水速
(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。例:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?(五)劳力调配问题:这类问题要搞清人数的变化.例1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?例2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。(六)配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(七)分配问题:例.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。(八)年龄问题:例:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.(九)比赛积分问题:10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了______道题。(十)利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?(十一)储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例.某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)(十二)增长率问题:1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产%2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是。。(十三)数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(十四)古典数学:1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?练习:1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。甲从A地、乙从B地同时出发,相向而行。甲每分钟行50千米,乙每分钟行70千米。两人在C处第一次相遇。问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。问CD之间距离是多少?3.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。4.某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?5.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。6.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?7.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?8.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?9.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三管同时开放,多少小时才能把一空池注满水?10.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。11.岳池县城某居民小区的水、电、气的价格是:水每吨1.55元,电每度0.67元,天然气每立方米1.47元.某居民户在2006年11月份支付款67.54元,其中包括用了5吨水、35度电和一些天然气的费用,还包括交给物业管理4.00元的服务费.问该居民户在2006年11月份用子多少立方米天然气?12.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?13.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,他买到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?14.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?15.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?16.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?17.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。18.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张长方形可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?19.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。20.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。21.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?22.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?23.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?24.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。25.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄26.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?27.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?28.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?一元一次方程应用题分类专项训练
1、数字问题①已知三个连续偶数的和是2004,求这三个偶数各是多少?
②一个两位数,十位上的数字比个位上的数字小5,若此两位数的两个数字位置交换,得一新两位数,那么新两位数与原两位数大45,求新两位数与原两位数的积是多少?
2、调配问题③天平的两个盘内分别盛有51g、45g盐,应该怎样调配才能使天平平衡?
④有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?
⑤甲乙两人分别存书108本和54本,现要让甲给乙一些书,使甲有的书占乙有书的20%,问甲给了一多少书?
⑥某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?
⑦某班举办一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张.这个班有多少学生?一共展出了多少张邮票?
⑧学校新进若干箱教学设备,某班同学去运,若每人运8箱,还余16箱;若每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?
⑨某车间有28名工人,生产一种螺栓和螺母,平均每人每小时能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺母刚好配套.
⑩七年级170名学生去植树,男生平均一天挖树坑3个,女生平均一天种树7棵,若正好每个树坑种一棵树,则该年级的男、女生各有多少人?
3、年龄问题11某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的2倍?
12三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和事41,求乙同学的年龄.
4、销售问题13某推销员,卖出全部商品的后得到400元,卖出全部商品共得多少元?
14某商品在进价基础上加价20%后的价格为120元,它的进价是多少?
15买2支钢笔、一支圆珠笔需要4元;买1支钢笔、2支圆珠笔需要5元,求买4支钢笔、4本圆珠笔需要多少元?
16某产品按原价提高40%后打八折销售,每件商品赚270元,问该商品原标价多少元?现销售价是多少?
17某进货价为100元的商品标价为150元,老板要求以不低于5%的利润率出售,售货员最低可以优惠打几折出售该商品?
18某商店一次卖出两台不同品牌的产品,其中一台赚了12%,另一台赔了12%,且这两件商品的售价均为3080元,问该商店本次交易的盈利情况.
19甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?
20某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听和书包的单价和味452元,且随身听的单价比书包的单价的4倍少8元。某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物卷30元,但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱呢?
21某商店购进一批节能灯,每个13元,运输过程中损坏了12个,出售单价为15元,获利1020元,求购进多少个节能灯?
5、工程问题22某管道由甲乙两个工程队单独施工分别要30天,20天铺完。1.如果两队从两端同时施工,需要多少天铺完?2.已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。
23一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?
24某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?
25某工厂今年比去年增产60%,达到生产320万件产品的目标,那么该工厂去年的年产量是多少?
26某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?
6、路程问题27甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?
28小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速1.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?
29小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。
30甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?
31甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?
(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?
32小张开车去火车站,如果速度为30千米/时,则早15分钟到达,如果18千米/时,则迟到5分,现在打算提前10分钟到达,那么他开车的速度是多少?
33A、B两地相距49千米,某人步行从A地出发,分三段以不同速度走完全程,共用10小时。已知第一段、第二段、第三段的速度分别为6千米/时,4千米/时,5千米/时,第三段的总路程为15千米,求第一段和第三段的路程?
34一架飞机在A、B两个城市之间飞行,顺分需要5.5小时,逆风需要6小时,风速为24千米/时,A、B两城市之间的距离是多少?
35从A码头到B码头顺水航行需行驶9小时,由于进行河道改弯取直工程后,路程近了50千米,而船航行速度增加40千米,且只需6小时即可到达,求A、B码头之间改道后的距离.
36一艘货轮往返于上下游两个码头之间,逆流而上需要38小时,顺流而下需要32小时,若水流速度为8千米/时,则两码头之间的距离是多少千米?
7、优化选择37某中学暑假准备组织师生去旅游,此校教师共50名,有两家旅行社可提供选择,每家的定价相同优惠政策不同。甲旅行社规定教师和学生一律按八折优惠,乙旅行社规定教师全免费,学生按八五折收费,经核算甲乙两家旅行社的收费完全相同,问有多少学生旅游?
某公园门票价格规定如下:购票张数1—50张51—100张100张以上每张票的价格13元11元9元某年级两个班共104人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇
50a+75(a-1)=275
50a+75a-75=275
125a=350
a=2.8小时
2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时
45分钟=3/4小时
根据题意
40a=40×3+(40-10)×(a-3+3/4)
40a=120+30a-67.5
10a=52.5
a=5.25=5又1/4小时=21/4小时
所以甲乙距离40×21/4=210千米
3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?
解:设乙队原来有a人,甲队有2a人
那么根据题意
2a-16=1/2×(a+16)-3
4a-32=a+16-6
3a=42
a=14
那么乙队原来有14人,甲队原来有14×2=28人
现在乙队有14+16=30人,甲队有28-16=12人
4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
解:设四月份的利润为x
则x*(1+10%)=13.2
所以x=12
设3月份的增长率为y
则10*(1+y)=x
y=0.2=20%
所以3月份的增长率为20%
5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人?
解:设有a间,总人数7a+6人
7a+6=8(a-5-1)+4
7a+6=8a-44
a=50
有人=7×50+6=356人
6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?
按比例解决
设可以炸a千克花生油
1:0.56=280:a
a=280×0.56=156.8千克
完整算式:280÷1×0.56=156.8千克
7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?
解:设总的书有a本
一班人数=a/10
二班人数=a/15
那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本
8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有a人
5a+14=7a-6
2a=20
a=10
一共有10人
有树苗5×10+14=64棵
9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?
解:设油重a千克
那么桶重50-a千克
第一次倒出1/2a-4千克,还剩下1/2a+4千克
第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油
根据题意
1/8a-5/3+50-a=1/3
48=7/8a
a=384/7千克
原来有油384/7千克
10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)
设96米为a个人做
根据题意
96:a=33:15
33a=96×15
a≈43.6
所以为2班做合适,有富余,但是富余不多,为3班做就不够了
11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。
解:设原分数分子加上123,分母减去163后为3a/4a
根据题意
(3a-123+73)/(4a+163+37)=1/2
6a-100=4a+200
2a=300
a=150
那么原分数=(3×150-123)/(4×150+163)=327/763
12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)
设水果原来有a千克
60+60/(2/3)=1/4a
60+90=1/4a
1/4a=150
a=600千克
水果原来有600千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)
设原来有a吨
a×(1-3/5)+20=1/2a
0.4a+20=0.5a
0.1a=20
a=200
原来有200吨
14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少?
解:设长可宽分别为5a米,2a米
根据题意
5a+2a×2=48(此时用墙作为宽)
9a=48
a=16/3
长=80/3米
宽=32/3米
面积=80/3×16/3=1280/9平方米
或
5a×2+2a=48
12a=48
a=4
长=20米
宽=8米
面积=20×8=160平方米
15、某市移动电话有以下两种计费方法:
第一种:每月付22元月租费,然后美分钟收取通话费0.2元。
第二种:不收月租费每分钟收取通话费0.4元。
如果每月通话80分钟哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢??
设每月通话a分钟
当两种收费相同时
22+0.2a=0.4a
0.2a=22
a=110
所以就是说当通话110分钟时二者收费一样
通话80分钟时,用第二种22+0.2×80=38>0.4×80=32
通过300分钟时,用第一种22+0.2×300=82<0.4×300=120
16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?
设a个工人加工桌面,则加工桌腿的工人有你60-a人
3a=(60-a)×6/4
12a=360-6a
18a=360
a=20
20人加工桌面,60-20=40人加工桌腿
17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离
设距离为a千米
a/(17/6)-24=a/3+24
6a/17-a/3=48
a=2448千米
18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从AB两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?
设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时
30分钟=1/2小时,40分钟=2/3小时
(4-2/3)a+(a+1.5)×(4-1/2)=12×3
10/3a+7/2a+21/4=36
41/6a=123/4
a=4.5千米/小时
甲的速度为4.5+1.5=6千米/小时
19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。
解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时
15分=1/4小时,6点15分到8点45分是5/2小时
距离差=7+1/4a
追及时间=5/2小时
(1.5a-a)×5/2=7+1/4a
5/4a=7+1/4a
a=7千米/小时
甲的速度为7×1.5=10.5千米/小时
20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽?
设硬化路面为a米
40a×2+(30-2a)×a×3=40×30-198×2
80a+90a-6a²=804
3a²-85a+402=0
(3a-67)(a-6)=0
a=67/3(舍去),a=6
所以路宽为6米
因为3a<40
a<40/3
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
解:1、水面年租金=500元
苗种费用=75x4+15x20=300+300=600元
饲养费=525x4+85x20=2100+1700=3800元
成本=500+600+3800=4900元
收益1400x4+160x20=5600+3200=8800元
利润(每亩的年利润)=8800-4900=3900元
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3.
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a>0(1)
0<5a+5<35(2)
0<5a+5-[8(a-2)]<8(3)
由(2)得
-5<5a<30
-1<a<6
由(3)
0<5a+5-8a+16<8
-21<-3a<-13
13/3<a<7
由此我们确定a的取值范围
4又1/3<a<6
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮夹克项目营销计划书
- 5G智能交通系统行业营销策略方案
- 臭氧消毒机细分市场深度研究报告
- 2024年福建厦门市新景幼儿园钟宅分园招聘笔试模拟试题及答案解析
- 初心如磐携手共创美好未来计划
- 旅行摄影艺术解析-从初学者到专业摄影师的全程指南
- 家居电商平台发展趋势-电商平台分析师
- 人力资源经理工作职责培训
- 探索历史遗址的魅力-历史文化与人类智慧
- 社区青年志愿服务的行动计划
- 上海市普通高中学业水平合格性考试地理基础知识点复习提纲
- 废旧风机叶片循环利用项目可行性研究报告-积极稳妥推进碳达峰碳中和
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 《甘肃省中医康复中心建设标准(2021版)》
- QB∕T 2345-2013 脂肪烷基二甲基甜菜碱平均相对分子质量的测定气相色谱法
- 高中英语外刊-小猫钓鱼50篇
- 监理大纲工程监理方案技术标投标方案
- 《3.2认识居民身份证》道法课件
- 《园林制图》课件-曲线与曲面
- 中国移动:5G-A无源物联网典型场景技术解决方案白皮书2024
- PowerPoint培训教程课件
评论
0/150
提交评论