版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考模拟试题PAGEPAGE1黄山市2023届高中毕业班第一次质量检测数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.若,则()A.2 B. C. D.43.已知点在双曲线的渐近线上,则双曲线的离心率为()A. B.2 C. D.4.南宋数学家在《详析九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数列中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有一个高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第30项为()A.379 B.407 C.436 D.4665.两批同种规格的产品,第一批占、合格品率为,第二批占、合格品率为.将两批产品混合,从混合产品中任取一件.则这件产品是次品的概率为()A. B. C. D.6.2022年11月30日,神舟十四号字航员陈冬、刘洋、蔡旭哲和神舟十五号宇航员费俊龙、邓清明、张陆顺利“会师太空”,为记录这一历史时刻,他们准备在天和核心舱合影留念.假设6人站成一排,要求神舟十四号三名航天员互不相邻,且神舟十五号三名航天员也互不相邻,则他们的不同站法共有()种A.72 B.144 C.36 D.1087.在中,,O是的外心,则的最大值为()A.1 B. C.3 D.8.下列不等式不正确的是()A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数,现将函数的图象沿x抽向左平移单位后,得到一个偶函数的图象,则()A.函数的周期为B.函数图象一个对称中心为C.当时,函数的最小值为D.函数的极值点为10.在正方体中,点P满足,则()A.对于任意的正实数,三棱锥的体积始终不变B.对于任意的正实数,都有平面C.存在正实数,使得异面直线与所成的角为D.存在正实数,使得直线与平面所成的角为11.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念、公式符号、推理论证、思维方法等之中,揭示了规律性,是一种科学的真实美.在平面直角坐标系中,曲线就是一条形状优美的曲线,则()A.曲线围成的图形的周长是B.曲线上的任意两点间的距离不超过4C.曲线围成的图形的面积是D.若是曲线上任意一点,则的最小值是12.对于函数,则()A.是单调函数的充要条件是B.图像一定是中心对称图形C.若,且恰有一个零点,则或D.若的三个零点恰为某三角形的三边长,则三、填空题:本题共4小题,每小题5分,共20分.13.在的展开式中,常数项为15,则实数a的值为____________.14.已知,若成等差数列,成等比数列,则的最小值是____________.15.圆锥的轴截面是边长为6的等边三角形,在该圆锥内放置一个棱长为m的正四面体,并且正四面体可以在该圆锥内任意转动,则实数m的最大值为____________.16.设抛物线的焦点为F,直线l过F且与抛物线交于A、B两点,若,则直线l的方程为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,已知外接圆的圆心O为坐标原点,且O在内部,.(1)求,求;(2)求面积的最大值.18.已知数列满足且.(1)求数列的通项公式;(2)数列满足,,若,求k的值.19.如图1,在直角梯形中,,点E、F分别是边的中点,现将沿边折起,使点C到达点P的位置(如图2所示),且.(1)求证:平面平面;(2)求平面与平面夹角的余弦值.20.第22届卡塔尔世界杯(FIFAWorldCupQatar2022)足球赛,于当地时间2022年1月20日(北京时间1月21日)至12月18日在卡塔尔境内5座城市中的8座球场举行,共计4场赛事.除东道主卡塔尔外,另有来自五个大洲足球联合会的31支球队拥有该届世界杯决赛参赛资格,各大洲足联各自举办预选赛事以决定最终出线的球队.世界杯群星荟萃,拨动着各国人民的心弦,向人们传递着正能量和欢乐.(1)某中学2022年举行了“学习世界杯,塑造健康体魄”的主题活动,经过一段时间后,学生的身体素质明显增强,现将该学校近5个月体重超重的人数进行了统计,得到如下表格:月份x12345体重超重人数y640540420300200若该学校体重超重人数y与月份x(月份x依次为1,2,3,4,5…)具有线性相关关系,请预测从第几月份开始该学校体重超重人数降至50人以下?(2)在某次赛前足球训练上,开始时球恰由控制,此后规定球仅在A、B和C三名队员中传递,已知当球由A控制时,传给B概率为,传给C的概率为;当球由B控制时,传给A的概率为,传给C的概率为;当球由C控制时,传给A的概率为,传给B的概率为.①记为经过n次传球后球恰由A队员控制的概率,求;②若传球次数,C队员控制球的次数为X,求.参考公式:.21.已知椭圆的离心率为,且直线截椭圆所得的弦长为.(1)求椭圆的标准方程;(2)若直线与y轴交于点P,A、C为椭圆上的两个动点、且位于第一象限(不在直线上),直线分别交椭圆于B、D两点,若直线分别交直线于E、F两点,求证:.22.已知函数.(1)求函数单调区间;(2)若不等式恒成立,求实数k的取值范围.高考模拟试题PAGEPAGE1黄山市2023届高中毕业班第一次质量检测数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.若,则()A.2 B. C. D.43.已知点在双曲线的渐近线上,则双曲线的离心率为()A. B.2 C. D.4.南宋数学家在《详析九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数列中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有一个高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第30项为()A.379 B.407 C.436 D.4665.两批同种规格的产品,第一批占、合格品率为,第二批占、合格品率为.将两批产品混合,从混合产品中任取一件.则这件产品是次品的概率为()A. B. C. D.6.2022年11月30日,神舟十四号字航员陈冬、刘洋、蔡旭哲和神舟十五号宇航员费俊龙、邓清明、张陆顺利“会师太空”,为记录这一历史时刻,他们准备在天和核心舱合影留念.假设6人站成一排,要求神舟十四号三名航天员互不相邻,且神舟十五号三名航天员也互不相邻,则他们的不同站法共有()种A.72 B.144 C.36 D.1087.在中,,O是的外心,则的最大值为()A.1 B. C.3 D.8.下列不等式不正确的是()A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数,现将函数的图象沿x抽向左平移单位后,得到一个偶函数的图象,则()A.函数的周期为B.函数图象一个对称中心为C.当时,函数的最小值为D.函数的极值点为10.在正方体中,点P满足,则()A.对于任意的正实数,三棱锥的体积始终不变B.对于任意的正实数,都有平面C.存在正实数,使得异面直线与所成的角为D.存在正实数,使得直线与平面所成的角为11.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念、公式符号、推理论证、思维方法等之中,揭示了规律性,是一种科学的真实美.在平面直角坐标系中,曲线就是一条形状优美的曲线,则()A.曲线围成的图形的周长是B.曲线上的任意两点间的距离不超过4C.曲线围成的图形的面积是D.若是曲线上任意一点,则的最小值是12.对于函数,则()A.是单调函数的充要条件是B.图像一定是中心对称图形C.若,且恰有一个零点,则或D.若的三个零点恰为某三角形的三边长,则三、填空题:本题共4小题,每小题5分,共20分.13.在的展开式中,常数项为15,则实数a的值为____________.14.已知,若成等差数列,成等比数列,则的最小值是____________.15.圆锥的轴截面是边长为6的等边三角形,在该圆锥内放置一个棱长为m的正四面体,并且正四面体可以在该圆锥内任意转动,则实数m的最大值为____________.16.设抛物线的焦点为F,直线l过F且与抛物线交于A、B两点,若,则直线l的方程为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,已知外接圆的圆心O为坐标原点,且O在内部,.(1)求,求;(2)求面积的最大值.18.已知数列满足且.(1)求数列的通项公式;(2)数列满足,,若,求k的值.19.如图1,在直角梯形中,,点E、F分别是边的中点,现将沿边折起,使点C到达点P的位置(如图2所示),且.(1)求证:平面平面;(2)求平面与平面夹角的余弦值.20.第22届卡塔尔世界杯(FIFAWorldCupQatar2022)足球赛,于当地时间2022年1月20日(北京时间1月21日)至12月18日在卡塔尔境内5座城市中的8座球场举行,共计4场赛事.除东道主卡塔尔外,另有来自五个大洲足球联合会的31支球队拥有该届世界杯决赛参赛资格,各大洲足联各自举办预选赛事以决定最终出线的球队.世界杯群星荟萃,拨动着各国人民的心弦,向人们传递着正能量和欢乐.(1)某中学2022年举行了“学习世界杯,塑造健康体魄”的主题活动,经过一段时间后,学生的身体素质明显增强,现将该学校近5个月体重超重的人数进行了统计,得到如下表格:月份x12345体重超重人数y640540420300200若该学校体重超重人数y与月份x(月份x依次为1,2,3,4,5…)具有线性相关关系,请预测从第几月份开始该学校体重超重人数降至50人以下?(2)在某次赛前足球训练上,开始时球恰由控制,此后规定球仅在A、B和C三名队员中传递,已知当球由A控制时,传给B概率为,传给C的概率为;当球由B控制时,传给A的概率为,传给C的概率为;当球由C控制时,传给A的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁石化职业技术学院《审计流程实验》2023-2024学年第一学期期末试卷
- 昆明幼儿师范高等专科学校《社会科学名著》2023-2024学年第一学期期末试卷
- 江西传媒职业学院《机械制造技术基础实验》2023-2024学年第一学期期末试卷
- 吉林师范大学博达学院《课外读写实践》2023-2024学年第一学期期末试卷
- 湖南商务职业技术学院《电子线路CAD设计》2023-2024学年第一学期期末试卷
- 湖南财政经济学院《中国民族民间舞(一)》2023-2024学年第一学期期末试卷
- 黑龙江三江美术职业学院《中文工具书》2023-2024学年第一学期期末试卷
- 重庆工业职业技术学院《经济地理学》2023-2024学年第一学期期末试卷
- 浙江科技学院《材料综合实验》2023-2024学年第一学期期末试卷
- 年产2万吨盐酸二甲双胍原料药项目可行性研究报告模板-立项备案
- 2023年中考语文备考之名著阅读《经典常谈》思维导图合集
- 2023年湘教版数学七年级下册《整式的乘法》单元质量检测(含答案)
- 气柜安装工程施工方案
- GB/T 28750-2012节能量测量和验证技术通则
- GB/T 18791-2002电子和电气陶瓷性能试验方法
- 分子生物学本基因组及基因组学概论
- 《人工智能》全册配套课件
- 统编部编版四年级道德与法治下册优秀课件【全册】
- 高职大专《体育与健康》课程标准
- 12月1日世界艾滋病日预防艾滋病讲座PPT珍爱生命预防艾滋病PPT课件(带内容)
- 测量仪器自检记录表(全站仪)
评论
0/150
提交评论