版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例题精讲例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为.变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为.【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为.2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.5.直线l1交x轴于点A(6,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P为顶点的四边形是菱形,请直接写出点P的坐标.7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.(3)若S△AOC=S△BCP,求点P的坐标.(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;(3)点M是y轴上一动点,若S△MAB=S△OCD,直接写出点M的坐标.(4)在第一象限内是否存在点P,使△PAB为等腰直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.19.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.20.如图直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3,求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)22.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.(1)求点B的坐标和k的值;(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.24.如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴交于点A(0,4),与直线y=﹣x﹣1在第四象限相交于点B,连接OB,△AOB的面积为6.(1)求点B的坐标及直线AB的解析式;(2)已知点M在直线AB右侧,且△MAB是以AB为直角边的等腰直角三角形,请求出符合条件的点M的坐标.25.综合与探究:如图,直线l1:y=x+3与过点A(3,0)的直线l2:y=kx+b(k≠0)交于点C(1,m)与x轴交于点B.(1)求直线l2对应的函数解析式;(2)请直接写出不等式kx+b<x+3的解集;(3)若点N在平面直角坐标系内,则在直线l1上是否存在点F使以A,B,F,N为顶点的四边形为菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.一次函数y=kx+(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=k2x的图象交点为C(3,4).(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在y轴上是否存在一点P使△POC为等腰三角形,若存在,求出所有符合条件的点P的坐标.28.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.29.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ是正方形,请直接写出所有符合条件的点D的坐标.30.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
例题精讲例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为(﹣8,0)或(﹣2,0)或(18,0)或(﹣,0).解:一次函数y=﹣x+6中令x=0,解得y=6;令y=0,解得x=8,∴A(8,0),B(0,6),即OA=8,OB=6,在直角三角形AOB中,根据勾股定理得:AB=10,分四种情况考虑,当BM=BA时,由BO⊥AM,根据三线合一得到O为MA的中点,此时M1(﹣8,0);当AB=AM时,由AB=10,得到OM=﹣2或18,此时M2(﹣2,0),M3(18,0);当MA=MB时,∵A(8,0),B(0,6),∴AB的中点的坐标为(4,3),设直线AB的垂直平分线的解析式为y=x+b,代入(4,3)得3=+b,解得b=﹣,∴直线AB的垂直平分线的解析式为y=x﹣,令y=0,解得x=,此时M4(,0).综上,这样的M点有4个,分别为(﹣8,0)或(﹣2,0)或(18,0)或(,0).故答案为(﹣8,0)或(﹣2,0)或(18,0)或(,0).变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为(2,0)或(,0)或(,0).解:∵在y=﹣x+3中,令x=0,则y=3;令y=0,则﹣x+3=0,解得x=3,∴N(3,0),M(0,3),∴OM=ON=3,∵AN=2AM,∴A(1,2),∴OA==,当AO=OB时,则OB=,∴点B的坐标为(﹣,0)或(,0);②当AO=AB时,设点B的坐标为(m,0),则=,整理得,(1﹣m)2=1,解得m=2或m=0(舍去),∴点B的坐标为(2,0).综上所述:点B的坐标为(2,0)或(,0)或(,0).【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.解:(1)联立两直线解析式成方程组,得,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=42+42=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=±4;故点P的坐标为(4,0)或(8,0)或(4,0)或(﹣4,0).考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.解:当△ABC为直角三角形时,设点C坐标为(x,0),分三种情况:①如果A为直角顶点,则AB2+AC2=BC2,即(2﹣5)2+(2﹣1)2+(2﹣x)2+22=(5﹣x)2+1,解得:x=,②如果B为直角顶点,那么AB2+BC2=AC2,即(2﹣5)2+(2﹣1)2+(5﹣x)2+1=(2﹣x)2+22,解得x=,③如果C为直角顶点,那么AB2=AC2+BC2,即(2﹣5)2+(2﹣1)2=(2﹣x)2+22+(5﹣x)2+1,解得x=3或4,综上可知,使△PAB为直角三角形的点C坐标为(,0)或(,0)或(3,0)或(4,0).变式训练【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是(1,0)或(3,0).解:∵一次函数y=kx+1的图象过点A(1,2),∴2=k+1,解得k=1,∴一次函数的解析式为y=x+1.∴当∠APB=90°时,P1(1,0);当∠BAP=90°时,∵一次函数的解析式为y=x+1,∴设直线AP的解析式为y=﹣x+b,∵A(1,2),∴2=﹣1+b,解得b=3,∴直线AP的解析式为y=﹣x+3,∴当y=0时,x=3,∴P2(3,0).综上所述,点P的坐标是(1,0)或(3,0).【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x﹣2的图象与一次函数y=4x+b的图象交于点D,且点D的坐标为(﹣2,﹣4),∴关于x、y的方程组的解是,∴关于x、y的方程组的解是,故答案为:;(2)把点D的坐标代入一次函数y=4x+b中得:﹣8+b=﹣4,解得:b=4,∴B(0,4),∵A(0,﹣2),∴AB=4﹣(﹣2)=6,∴S△ABD==6;(3)存在,如图1,当点E为直角顶点时,过点D作DE⊥x轴于E,∵D(﹣2,﹣4),∴E(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE⊥CD交x轴于点E,作DF⊥x轴于F,设E(t,0),当y=0时,4x+4=0,∴x=﹣1,∴C(﹣1,0),∵F(﹣2,0),∴CE=﹣1﹣t,EF=﹣2﹣t,∵D(﹣2,﹣4),∴DF=4,CF=﹣1﹣(﹣2)=1,在Rt△DEF中,DE2=EF2+DF2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDF中,CD2=12+42=17,在Rt△CDE中,CE2=DE2+CD2,∴(﹣1﹣t)2=t2+4t+20+17,解得t=﹣18,∴E(﹣18,0),综上,点E的坐标为:(﹣2,0)或(﹣18,0).考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.解:(1)将A(1,3)、B(﹣2,﹣1),代入y=kx+b得:,解得,∴一次函数的表达式为y=x+;(2)在y=x+中,令x=0得y=,∴OD=,∴S△AOD=OD•|xA|=××1=,S△BOD=OD•|xB|=××2=,∴△AOB的面积S△AOB=S△BOD+S△AOD=;(3)存在,理由如下:在y=x+中,令y=0得y=﹣,∴C(﹣,0),设M(m,n),而B(﹣2,﹣1),O(0,0),①以OB、CM为对角线,则OB的中点即是CM的中点,如图:∴,解得,∴M(﹣,﹣1);②以BC、OM为对角线,则BC的中点即是OM的中点,如图:∴,解得,∴M(﹣,﹣1);③以BM、CO为对角线,则BM的中点即是CO的中点,如图:∴,解得,∴M(,1);综上所述,M的坐标为:(﹣,﹣1)或(﹣,﹣1);或(,1).变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m=﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)x2﹣4x+3=0,解得:x=3或1,故BC=1,OC=3,即点C(0,3)、点A(﹣1,0),则点B(﹣1,3),点D(3,0),点E(3,1),将B、D点的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+…①;(2)同理可得:直线OE的表达式为:y=x…②,联立①②并解得:y=,即点H到x轴的距离为:;(3)直线BD的表达式为:y=﹣x+,则点F(0,),①当FD是矩形的一条边时,当点M在x轴上时,∵MF⊥BD,则直线MF的表达式为:y=x+,当y=0,x=﹣,即点M(﹣,0),点F向右平移3个单位向下平移单位得到D,则点M向右平移3个单位向下平移单位得到N,则点N(,﹣);当点M在y轴上时,同理可得:点N(﹣3,﹣);②当FD是矩形的对角线时,此时点M在原点O,则点N(3,);综上,点N的坐标为:(,﹣)或(﹣3,﹣)或(3,).考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10,过点C作CH⊥AB于H,设OC=t,∵BC平分∠ABO,∠AOB=90°,∴CH=OC=t,∵S△ABO=S△ABC+S△BCO,∴OA•OB=AB•CH+OC•OB,∴6×8=10t+6t,∴t=3,∴OC=3,∴C(﹣3,0);(2)设线BC的表达式为:y=kx+b,∵B(0,6),C(﹣3,0),∴直线BC的表达式为:y=2x+6,设点M(m,2m+6)、N(n,2n+6),过点M作MF⊥x轴于点F,过点N作NE⊥x轴于点E,∵△AMN为等腰直角三角形,故AM=AN,∵∠NAE+∠MAF=90°,∠MAF+∠AMF=90°,∴∠NAE=∠AMF,∵∠AFM=∠NEA=90°,AM=AN,∴△FMA≌△EAN(AAS),∴EN=AF,MF=AE,即﹣2n﹣6=m+8,2m+6=8+n,解得:m=﹣2,n=﹣6,故点M的坐标为(﹣2,2)、点N(﹣6,﹣6);由于M,N的位置可能互换,故点N的坐标为(﹣2,2)、点M(﹣6,﹣6);综上所述,点M的坐标为(﹣2,2)或(﹣6,﹣6);(3)设点P(0,p),∴BP2=(p﹣6)2,AP2=82+p2,①当AB是边时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴BP=AB=10,BP′=AB=10,OB=OP″,∵B(0,6),∴P(0,16),P′(0,﹣4),P″(0,﹣6),∵A(﹣8,0),∴Q(﹣8,10),Q′(﹣8,﹣10),Q″(8,0);②当AB是对角线时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴AP=BP,∴BP2=AP2,∴(p﹣6)2=82+p2,解得p=﹣,∴P(0,﹣),∵A(﹣8,0),B(0,6),∴Q(﹣8,);综上所述,点Q的坐标为(﹣8,10)或(﹣8,﹣10)或(8,0)或(﹣8,).变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点A(m,2)在直线y=x+4上∴m+4=2解得m=﹣2∴点A的坐标为(﹣2,2)设直线AB的解析式为y=kx+b∴解得∴直线AB的解析式为y=﹣2x﹣2;(2)如图1,由题意设点E的坐标为(a,a+4),则∵EF∥y轴,点F在直线y=﹣2x﹣2上∴点F的坐标为(a,﹣2a﹣2)∴EF=|a+4﹣(﹣2a﹣2)|=|3a+6|,∵以点O、C、E、F为顶点的四边形是平行四边形,且EF∥OC∴EF=OC∵直线y=x+4与y轴交于点C∴点C的坐标为(0,4)∴OC=4,即|3a+6|=4解得:a=﹣或a=﹣∴点E的坐标为(﹣,)或(﹣,);(3)如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,∵B(0,﹣2),C(0,4),∴点P的纵坐标为1,将y=1代入y=x+4中,得x+4=1,∴x=﹣3,∴P''(﹣3,1),∴Q''(3,1)当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),∴BQ的中点坐标为(,),代入直线y=x+4中,得+4=①,∵CQ=CB,∴m2+(n﹣4)2=36②,联立①②得,(舍)或,∴Q'(﹣6,4),当PB是对角线时,PC=BC=6,设P(c,c+4),∴c2+(c+4﹣4)2=36,∴c=3(舍)或c=﹣3,∴P(﹣3,﹣3+4),设Q(d,e)∴(﹣3+0)=(0+d),(﹣3+4﹣2)=(e+4),∴d=﹣3,e=﹣3﹣2,∴Q(﹣3,﹣3﹣2),即:点Q的坐标为(3,1),(﹣6,4)或(﹣3,﹣3﹣2).1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为(﹣8,0)(3,0)(2,0)(,0).解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标P1(4,0),P2(,0),P3(﹣,0),P4(,0).解:设P(x,0),当OA=AP时,∵A(2,1),∴P1(4,0);当OA=OP时,∵A(2,1),∴OA==,∴P2(,0),P3(﹣,0);当AP=OP时,∵P(x,0),(2,1),∴(2﹣x)2+12=x2,解得x=,∴P4(,0).综上所述,P点坐标为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).故答案为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|My|=OC=2,|Mx|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.解:(1)∵正比例函数y=k1x的图象经过点A(3,4),∴3k1=4,∴k1=,∴正比例函数解析式为y=x.如图1中,过A作AC⊥x轴于C,在Rt△AOC中,OC=3,AC=4,∴AO==5,∴OB=OA=5,∴B(0,﹣5),∴,解得,∴一次函数的解析式为y=3x﹣5.(2)如图1中,过A作AD⊥y轴于D,∵A(3,4),∴AD=3,∴S△AOB=;(3)当OP=OA时,P1(﹣5,0),P2(5,0),当AO=AP时,P3(6,0),当PA=PO时,线段OA的垂直平分线为y=﹣,∴,满足条件的点P的坐标(﹣5,0)或(5,0)或(6,0)或.5.直线l1交x轴于点A(6,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.解:∵点A(6,0),交y轴于B(0,6).∴OA=6,OB=6,∴tan∠OAB==,∴∠OAB=30°,∴∠OBA=60°,∵折叠△AOB,∴∠OBC=∠ABC=30°,∴BC=2OC,BO=OC=6,∴OC=2,∴点C(2,0),设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y=﹣x+6;(2)当点M与点B重合时,由(1)可知:∠AMC=∠MAC=30°,∴CM=AC,∴△ACM是等腰三角形,∴当M为(0,6)时,△ACM是等腰三角形,∵OC=2,OA=6,∴AC=4,若AM=AC=4,如图1:过点M作MH⊥AC,∵∠MAH=30°,∴MH=AM=2,AH=2MH=6,∴OH=6﹣6或6+6,∴点M(6﹣6,2)或(6+6,﹣2)若AM=MC,如图2,过点M作MH⊥AC,∵AM=MC,MH⊥AC,∴AH=CH=2,∴OC=4,∵∠MAH=30°,∴AH=MH,∴MH=2,∴点M(4,2),综上所述:点M(6﹣6,2)或(6+6,﹣2)或(4,2)或(0,6).6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P为顶点的四边形是菱形,请直接写出点P的坐标.解:(1)令y=kx+8k=0,解得x=﹣8,故点A的坐标为(﹣8,0);(2)过点A作AD⊥AB交BC于点D,过点A作y轴的平行线交过点B与x轴的平行线于点M,交过点D与x轴的平行线于点N,∵∠ABC=45°,故△ABD为等腰直角三角形,则AD=AB,∵∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN,∵∠BMA=∠AND=90°,∴△BMA≌△AND(AAS),∴AN=BM=8,ND=AM=6,故点D的坐标为(﹣2,﹣8),设直线BC的表达式为y=kx+b,则,解得,故直线BC的表达式为y=7x+6;(3)设点M的坐标为(m,7m+6),点P(s,t),而点A、B的坐标分别为(﹣8,0)、(0,6),①当AB是边时,点A向右8个单位向上6个单位得到点B,同样,点M(P)向右8个单位向上6个单位得到点P(M),且AB=BP(AB=BM),则或,解得或或(不合题意的值已舍去);故点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2);②当AB是对角线时,由中点坐标公式和AM=BM得:,解得,故点P的坐标为(﹣7,7);综上,点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2)或(﹣7,7).7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)∵将点C(m,6)代入y=x,∴6=m,∴m=4,∴C(4,6),设一次函数的解析式为y=kx+b,∴,∴,∴y=x+3;(2)在y=x+3中,令x=0得y=3,∴B(0,3),∴S△BOC=OB•|xC|=×3×4=6;(3)在x轴上存在一点P,使得△ABP是等腰三角形,理由如下:∵A(﹣4,0),B(0,3),∴AB=5,OA=4,当B为等腰三角形顶角顶点时,P点与A点关于y轴对称,∴P(4,0);当A为等腰三角形顶角顶点时,AP=AB=5,∴P(﹣9,0)或P(1,0);当P为等腰三角形顶角顶点时,设P(t,0),∵PA=PB,∴(t+4)2=t2+9,解得t=﹣,∴P(﹣,0),综上所述:P点坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.解:(1)把点A(﹣6,0)代入y=x+m,得m=8,∴点B坐标为(0,8).(2)存在,设点C坐标为(a,0),由题意•|a+6|•8=16,解得a=﹣2或﹣10,∴点C坐标(﹣2,0)或(﹣10,0).(3)如图1中,①当AB=AP时,AP=AB==10,可得P1(﹣16,0),P2(4,0).②当BA=BP时,OA=OP,可得P3(6,0).③当PA=PB时,∵线段AB的垂直平分线为y=﹣x+,可得P4(,0),综上所述,满足条件的点P坐标为(﹣16,0)或(4,0)或(6,0)或(,0).(4)如图2中,设过点D的直线交AB于E,设E(b,),由题意BD•(﹣b)=××6×8,∴b=﹣4,∴点E坐标(﹣4,),设直线DE的解析式为y=kx+b则有,解得,∴这条直线的函数表达式y=﹣x+2.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.解:(1)当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2);当y=0时,有﹣x+2=0,解得:x=4,∴点A的坐标为(4,0);(2)∵一次函数y=﹣x+2的图象交直线y=kx于P(2,a).∴a=﹣×2+2=1,∴点P的坐标为(2,1),设点Q(m,0),而点A、P的坐标分别为:(4,0)、(2,1),则AP==,AQ=|4﹣m|,PQ=,当AP=AQ时,则=|4﹣m|,解得m=4±,∴点Q(4±,0);当AP=PQ时,=,解得m=0或4(舍去),∴点Q(0,0);当PQ=AQ时,即=|4﹣m|,解得:m=,∴点Q(,0);综上,点Q的坐标为(4±,0)或(0,0)或(,0);(3)∵y=kx过P(2,1).∴2k=1,解得k=,∴y=x,设点C的坐标为(n,﹣n+2),则点D的坐标为(n,n),点E的坐标为(n,0),∴CD=|﹣n+2﹣n|=|2﹣n|,DE=|n|,CE=|﹣n+2|=|n﹣2|,当D为CE的中点时,CD=DE,∴|2﹣n|=|n|,解得n=或4(舍去),∴点C的坐标为(,);当C为DE的中点时,CD=CE,∴|2﹣n|=|n﹣2|,解得n=或0(舍去),∴点C的坐标为(,);当E为CD的中点时,DE=CE,∴|n|=|n﹣2|,无解;综上,C,D,E三点为“和谐点”时C点的坐标为(,)或(,).10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)令y=0,,解得x=.令x=0,y=.∴A(,0),B(0,).=.∴△AOB的面积为12.(2)∵动点M从A点以每秒1个单位的速度沿x轴向左移动,∴AM=t.当0≤t≤时,OM=,OC=.∴==.当t>时,OM=t﹣.∴==.综上,△COM的面积S与M的移动时间t之间的函数关系式:S=.(3)在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形.①当AC,AM为菱形的边时,情况一:如图1,当点M在点A的左侧时,Rt△AOC中,=,∴NC=AC=.∵NC∥AM,∴点N(,).情况二,如图1′,当点M在点A的右侧时,由情况一同理可得点N的坐标为.②当AC为菱形的对角线时,如图2,此时M,O重合,四边形OANC为正方形,则点N(,).③如图3,当AC为菱形的边,AM为菱形的对角线时,此时点C,N关于x轴对称,∴点N(0,﹣).综上,在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形,此时点N的坐标为:(,),,(,),(0,﹣).11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=﹣x+4,令x=0的y=4,令y=0得x=4,∴A(4,0),B(0,4),∴OB=OA=4,∵OC=OB,∴OC=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x+4.(2)如图1中,当点M在点A的左边时,∵OB=OA=4,∠AOB=90°,∴∠ABO=45°,∴∠CBO+∠MBA=∠MBA+∠MBO=45°,∴∠CBO=∠OBM,∵∠CBO+∠BCO=90°,∠BMO+∠OBM=90°,∴∠BCO=∠BMO,∴BC=BM,OC=OM=3,∴M(3,0),作点M关于直线AB的对称点N,作直线BN交x轴于M1,则∠M1BA=∠MBA,点M1满足条件.∵N(4,1),B(0,4),∴直线BN的解析式为y=﹣x+4,令y=0,得x=,∴M1(,0),综上所述,满足条件的点M的坐标为(3,0)或(,0).(3)如图2中,∵BC==5,当BC为菱形的边时,四边形CP1Q1B,四边形CP3Q3B,四边形BCQ2P2是菱形,此时Q1(﹣5,4),Q3(5,4),Q2(0,4),当BC是菱形的对角线时,四边形CP4BQ4是菱形,可得Q4(﹣,4).综上所述,满足条件的点Q的坐标为(﹣5,4)或(5,4)或(0,﹣4)或.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.(3)若S△AOC=S△BCP,求点P的坐标.(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.解:(1)∵一次函数y=的图象与x轴、y轴分别交于点A、点B,∴令y=0,则=0,∴x=8,令x=0,则y=6,∴点A、B的坐标分别为:(8,0)、(0,6);(2)解:得,,∴点C(3,),则C到直线l的距离为6﹣=;(3)∵S△AOC=×8×=15=S△BCP=×BP×(yP﹣yC)=BP×,解得:BP=,故点P(,6)或(﹣,6);(4)设点E(m,m)、点P(n,6);①当∠EPA=90°时,当点P在y轴右侧时,当点P在点E的左侧时,如图1,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即m﹣n=6,m﹣6=8﹣n,解得:m=,当点P在点E的右侧时,如图,同理可得m=16,当∠EAP=90°时,当点P在y轴左侧时,如图2,同理可得:m﹣8=6,m=8﹣n,解得:m=14,故点E(14,);故点E(,)或(14,)或(16,20);如图3,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14(不合题意舍去),故点E(2,);综上,E(,)或(16,20)或(2,)或(14,).13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.解:(1)∵直线y=﹣x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=﹣x+与x轴交于点B,∴令y=0,得﹣x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(﹣2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB轴的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,﹣1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(﹣,﹣),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形,14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.解:(1)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣1.(3)对于y=﹣x+2,令y=0,得x=2∴C(1,0),∴OC=2.∴S△AOC=×2×3=3.(4)①当点P与B重合时,OP1=OC,此时P1(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(1,1);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(1,1)或(0,2)或P(2+,﹣)或(2﹣,).15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为﹣1;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,在△BOC和△CED中,,∴△BOC≌△CED(AAS)(2)∵△BOC≌△CED,∴BO=CE=3,设OC=ED=m,∴D(m+3,m),将D(m+3,m)代入直线,∴m=1,∴D(4,1),(3)解:当CD为平行四边形的边时,如图:当CD∥P1Q1时,此时P1的横坐标为0,∴Q1的横坐标为3,∴y=,∴,当CD∥P2Q2时,由D平移到P2,水平向左平移4个单位,∴将C水平向左平移4个单位得Q2的横坐标为﹣3,∴y=,∴,当CD为平行四边形的对角线时,如图:由P3平移到C可知,水平向右平移1个单位,∴Q3的横坐标为5,∴,综上:Q()或Q()或Q(5,)18.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D处.(1)点A的坐标是(3,0),点B的坐标是(0,4),AB的长为5;(2)求点C的坐标;(3)点M是y轴上一动点,若S△MAB=S△OCD,直接写出点M的坐标.(4)在第一象限内是否存在点P,使△PAB为等腰直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.故答案为:(3,0),(0,4),5;(2)由折叠的性质可知BC=CD,AB=AD=5,∴OD=OA+AD=8,设OC=x,则CD=CB=x+4,在Rt△OCD中,CD2=OC2+OD2,∴(x+4)2=x2+82,解得:x=6,∴OC=6,∴C(0,﹣6);(3)∵S△OCD=×6×8=24,S△MAB=S△OCD,∴S△MAB=×24=8,设点M的坐标为(0,y),∴S△MAB=×3×|4﹣y|=8,解得:y=或y=﹣,∴点M的坐标为(0,)或(0,﹣);(4)存在,理由如下:①若∠BAP=90°,AB=AP,如图,过点P作PG⊥OA交A于点G,∵∠BAP=90°,AB=AP,∴∠OAB+∠PAG=90°,∠OAB+∠OBA=90°,∴∠PAG=∠OBA,∵∠AOB=∠PGA=90°,AB=AP,∴△AOB≌△PGA(AAS),∴OB=AG=4.OA=PG=3,∴OG=OA+AG=7.∴此时点P的坐标为(7,3);②若∠ABP=90°,AB=BP,如图,过点P作PH⊥OB交OB点H,同理可得,此时点P的坐标为(4,7);③若∠APB=90°,BP=AP,如图,过点P作PM⊥OA交OA于点M,PN⊥OB交OB于点N,∵∠BPA=90°,∴∠BPN+∠NPA=90°,∵∠NPA+∠APM=90°,∴∠BPN=∠APM,∴△BPN≌△APM(AAS),∴PN=PM,BN=AM,设点P的坐标为(a,a),∴4﹣a=a﹣3,解得:a=,∴此时点P的坐标为(,),综上所述,点P的坐标为(7,3)或(4,7)或(,).19.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.解:(1)将点A、B的坐标代入函数表达式:y=kx+b并解得:k=,b=﹣4,故直线的表达式为:;(2)当y=8时,解得x=9,∴点C的坐标为(9,8),∴CD=9,∵E是OD中点,∴DE=OE,则△EDC≌△EOF(AAS),∴OF=CD=9,∴AG=AF=OF+OA=12,过点C作CH⊥x轴于点H,∴;(3)①当∠FCG=90°时,AG=AF,则AC是中线,则AF=AC==10,故点F(﹣7,0),由点C、F的坐标可得:直线CF的表达式为:y=(x+7),故点E(0,),则m=;②当∠CGF=90°时,则点G(9,0),则AF=AG=6,故点F(﹣3,0),同理直线CF的表达式为:y=(x+3),故m=2;综上,m=或2.20.如图直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3,求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线l:y=kx+6过点B(﹣8,0),∴0=﹣8k+6,∴k=.(2)当x=0时,y=x+6=6,∴点C的坐标为(0,6).依照题意画出图形,如图1所示,设点P的坐标为(x,x+6),∴S△PAC=S△BOC﹣S△BAP﹣S△AOC,=×8×6﹣×2(x+6)﹣×6×6,=﹣x=3,∴x=﹣4,∴点P的坐标为(﹣4,3).设此时直线AP的解析式为y=ax+b(a≠0),将A(﹣6,0),P(﹣4,3)代入y=ax+b,得:,解得:,∴当点P的坐标为(﹣4,3)时,△PAC的面积为3,此时直线AP的解析式为y=x+9.(3)在Rt△BOC中,OB=8,OC=6,∴BC==10.分三种情况考虑(如图2所示):①当CB=CM时,OM1=OB=8,∴点M1的坐标为(8,0);②当BC=BM时,BM2=BM3=BC=10,∵点B的坐标为(﹣8,0),∴点M2的坐标为(2,0),点M3的坐标为(﹣18,0);③当MB=MC时,设OM=t,则M4B=M4C=8﹣t,∴CM42=OM42+OC2,即(8﹣t)2=t2+62,解得:t=,∴点M4的坐标为(﹣,0).综上所述
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《组件层压工艺说明》课件
- 吹气球治疗肺部疾病
- 《汇编程序设计》课件
- 《各种各样的绳子》课件
- 儿童常见病治疗
- 医院医疗设备外借流程
- 八省八校2022届高三化学下学期3月第二次联考试题
- 《安全事故案例汇编》课件
- 中国母婴营养品市场洞察报告
- 微课如何撰写岗位说明书之工作目的财经管理人力资源管理系
- 珍爱生命,拒绝“死亡游戏”主题班会教案(3篇)
- 国开(河北)2024年秋《现代产权法律制度专题》形考作业1-4答案
- 2024-2030年度假酒店项目融资商业计划书
- 2024年重庆新版劳动合同范本
- 2024年海南琼中黎族苗族自治县招聘事业单位人员17人历年高频难、易错点500题模拟试题附带答案详解
- 水利基建项目内部审计方法与技巧培训
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务5)试题及答案
- 《人力资源管理》全套教学课件
- 3.14 丝绸之路的开通与经营西域 课件 2024-2025学年部编版
- 第三单元《分数除法》(单元测试)-2024-2025学年六年级上册数学人教版
- 进京接访劝返工作预案
评论
0/150
提交评论