




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IQVIA
TECHNOLOGIES
ExecutiveSummary
ApplyingAIinToday’s
RealityofQARAProcesses
AIinMedTechandpracticalrealitiesinQARA
ERDITGREMI,DirectorRegulatoryAffairs,Philips
DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft
RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips
DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)
Tableofcontents
Keytakeaways1
Overview1
Context1
BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1
ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand
industriesinAIadoption2
Thetechnologyisonlyasgoodasyourdata2
Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3
OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor
thefuture3
Conclusion4
Abouttheauthor5
Keytakeaways
•BeforetalkingaboutAI,wemustunderstandtheAI
playingfield.
•ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.
•Thetechnologyisonlyasgoodasyourdata.
•Cleandatastartswithvalidation,buthandlingreal-
worlddata(RWD)ismessy.
•Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.
Overview
Thegloballifesciencesindustryhasbeenslowto
adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate
datacleansing.
Context
QARAprofessionalsneedtocollaboratewithother
professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.
BeforetalkingaboutAI,wemustunderstandtheAI
playingfield
ThepaneldiscussionbeganwithDeniseMeade,
healthcareandlifesciencestechnologyleaderat
Microsoft,settingilluminatingtheAIplayingfield
fortheaudience.SheexplainedthatAIisabroad
category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin
data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.
“Toputitintoperspective,ittook
Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”
—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft
TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby
investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”
Meadecautionedthatusersneedtohavesome
understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin
digitalmedicaldevices,roboticsandultrasoundtechnology.
“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”
Meadeexplained.“Abigimportantpartisthatdata
isaportionandsuperimportanttotraininmachine
learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou
have.Youdon’tneedtotrainthem.”
|1
Thelifesciencesand
healthcareindustriesin
theU.S.arebehindother
countriesandindustriesinAIadoption
AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the
lifesciencesandhealthcareindustriesarebehindin
AIadoption.
“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento
usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill
needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”
WhiletheFDAishesitanttoadoptAI,regulatorsin
othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.
AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.
“Howdoyoumakesurethatthe
datathatyouhaveinputintothisAIorintothismodelaretruly
representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”
—ErditGremi,DirectorRegulatoryAffairs,Philips
Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.
“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat
youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.
Thetechnologyisonlyasgoodasyourdata
Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto
understandthedataanddatasources.DonSoong,
seniordirectorandgeneralmanagerofquality
managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof
cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”
PhilipshasQARAanddatascientistsinthesame
departmenttopromotecollaborationandreduce
downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias
throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters
percategory,whichwillgiveafairresponsewhenthealgorithmsrun.
RajeshMirsa,principaloflifesciencesqualityand
regulatoryservicesleaderatKPMGLLP,wasnot
surprisedthatthediscussionturnedtowardsdata
quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota
staticthing.Itchanges.”
2|ApplyingAIinToday’sRealityofQARAProcesses
Cleandatastartswith
validation,buthandlingReal-WorldData(RWD)ismessy
ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe
haveandmoveforward?”Beingabletoaskandanswer
thisquestionensurestherightqualitydecisions
aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest
availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein
somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.
Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In
addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.
“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?
WhatsortofhypothesisamItryingtocreate?”In
somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or
30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe
calculationswhilebuildingthemodel.
RWDhasthepotentialtobecollectedinamore
pristinemanner.Meadespokefromexperiencewith
companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving
folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto
asystem.”
OrganizationsareeducatingQARAprofessionalsto
understandAIandpreparingforthefuture
ThebiggestchallengeishowtokeepinfrontofAI.
Lugonotedthatconferencesandprivateeventsare
keytohelpingtheindustryadoptAI.Ascompanies
enterthespacemoreaggressive,Lugosaidhefinds
thatitisdifficulttoopendoorsandlowerwalls
becauselifesciencesareguardedaswholeinthe
UnitedStates,unliketherestoftheworld,whenit
comestoAIadoption.Theprocessisslow.However,
hedidnoteincreasingcybersecurityconcernsas
aconsequenceoftechnologicaladvancesincethe
discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand
audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.
Mirsasuggestedthatthemostpressingconcernis
theworkforce.Inthecurrentenvironment,QARA
professionals’workloadconsistsof30%to40%
paperwork.Hesuggestedthatthisis15to20years
behindthetechnologicalcurvecomparedtoother
industries.ThisisindirectoppositiontoFDA’s
approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother
industries,QARAprocessesthataredependenton
paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.
Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And
that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto
moveforward,theworkplacemustmoveawayfrompaper.
LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith
newhires.Onekeyexamplehegavewasthrough
|3
communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m
calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.
Soongfocusedonthecostefficiencyconcernsforleadership.
“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto
beused.”
Conclusion
QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare
industryinUnitedStatesisbehindbothother
industriesandcountriesinadoption.However,there
isclearlyaneedforAI.Theupcomingworkforceis
comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals
whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年模具设计工程师考试试题及答案
- 2025年家庭教育指导师考试题及答案
- 2025年货币政策与宏观经济管理能力的考试题及答案
- 2025年电子信息工程师考试试卷及答案
- 2025年公共卫生安全管理考试试题及答案
- 2025年甘肃省天水市秦安县中医医院招聘编外人员34人笔试参考题库及参考答案详解1套
- 物资采购公司管理制度
- 物资集散中心管理制度
- 特殊人员羁押管理制度
- 特殊工种人员管理制度
- 伊春市纪委监委所属事业单位招聘笔试真题2024
- 2025年高考全国二卷英语高考真题
- (期末复习)常考知识清单(八大单元52个小知识点)-2024-2025学年三年级下册数学期末备考总复习(人教版)
- 2024北京朝阳区四年级(下)期末数学试题及答案
- 《全断面岩石掘进机法水工隧洞工程技术规范》
- 河南省郑州市2023-2024高一下学期期末考试数学试卷及答案
- 2023年工会财务知识竞赛题库及答案(完整版)
- 新高考志愿填报指导报考表
- 整车试验大纲
- 电缆厂物料编码规则(共8页)
- (完整)中考英语首字母填词高频词汇
评论
0/150
提交评论