版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IQVIA
TECHNOLOGIES
ExecutiveSummary
ApplyingAIinToday’s
RealityofQARAProcesses
AIinMedTechandpracticalrealitiesinQARA
ERDITGREMI,DirectorRegulatoryAffairs,Philips
DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft
RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips
DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)
Tableofcontents
Keytakeaways1
Overview1
Context1
BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1
ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand
industriesinAIadoption2
Thetechnologyisonlyasgoodasyourdata2
Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3
OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor
thefuture3
Conclusion4
Abouttheauthor5
Keytakeaways
•BeforetalkingaboutAI,wemustunderstandtheAI
playingfield.
•ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.
•Thetechnologyisonlyasgoodasyourdata.
•Cleandatastartswithvalidation,buthandlingreal-
worlddata(RWD)ismessy.
•Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.
Overview
Thegloballifesciencesindustryhasbeenslowto
adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate
datacleansing.
Context
QARAprofessionalsneedtocollaboratewithother
professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.
BeforetalkingaboutAI,wemustunderstandtheAI
playingfield
ThepaneldiscussionbeganwithDeniseMeade,
healthcareandlifesciencestechnologyleaderat
Microsoft,settingilluminatingtheAIplayingfield
fortheaudience.SheexplainedthatAIisabroad
category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin
data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.
“Toputitintoperspective,ittook
Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”
—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft
TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby
investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”
Meadecautionedthatusersneedtohavesome
understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin
digitalmedicaldevices,roboticsandultrasoundtechnology.
“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”
Meadeexplained.“Abigimportantpartisthatdata
isaportionandsuperimportanttotraininmachine
learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou
have.Youdon’tneedtotrainthem.”
|1
Thelifesciencesand
healthcareindustriesin
theU.S.arebehindother
countriesandindustriesinAIadoption
AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the
lifesciencesandhealthcareindustriesarebehindin
AIadoption.
“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento
usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill
needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”
WhiletheFDAishesitanttoadoptAI,regulatorsin
othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.
AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.
“Howdoyoumakesurethatthe
datathatyouhaveinputintothisAIorintothismodelaretruly
representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”
—ErditGremi,DirectorRegulatoryAffairs,Philips
Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.
“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat
youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.
Thetechnologyisonlyasgoodasyourdata
Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto
understandthedataanddatasources.DonSoong,
seniordirectorandgeneralmanagerofquality
managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof
cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”
PhilipshasQARAanddatascientistsinthesame
departmenttopromotecollaborationandreduce
downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias
throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters
percategory,whichwillgiveafairresponsewhenthealgorithmsrun.
RajeshMirsa,principaloflifesciencesqualityand
regulatoryservicesleaderatKPMGLLP,wasnot
surprisedthatthediscussionturnedtowardsdata
quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota
staticthing.Itchanges.”
2|ApplyingAIinToday’sRealityofQARAProcesses
Cleandatastartswith
validation,buthandlingReal-WorldData(RWD)ismessy
ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe
haveandmoveforward?”Beingabletoaskandanswer
thisquestionensurestherightqualitydecisions
aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest
availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein
somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.
Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In
addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.
“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?
WhatsortofhypothesisamItryingtocreate?”In
somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or
30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe
calculationswhilebuildingthemodel.
RWDhasthepotentialtobecollectedinamore
pristinemanner.Meadespokefromexperiencewith
companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving
folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto
asystem.”
OrganizationsareeducatingQARAprofessionalsto
understandAIandpreparingforthefuture
ThebiggestchallengeishowtokeepinfrontofAI.
Lugonotedthatconferencesandprivateeventsare
keytohelpingtheindustryadoptAI.Ascompanies
enterthespacemoreaggressive,Lugosaidhefinds
thatitisdifficulttoopendoorsandlowerwalls
becauselifesciencesareguardedaswholeinthe
UnitedStates,unliketherestoftheworld,whenit
comestoAIadoption.Theprocessisslow.However,
hedidnoteincreasingcybersecurityconcernsas
aconsequenceoftechnologicaladvancesincethe
discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand
audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.
Mirsasuggestedthatthemostpressingconcernis
theworkforce.Inthecurrentenvironment,QARA
professionals’workloadconsistsof30%to40%
paperwork.Hesuggestedthatthisis15to20years
behindthetechnologicalcurvecomparedtoother
industries.ThisisindirectoppositiontoFDA’s
approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother
industries,QARAprocessesthataredependenton
paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.
Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And
that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto
moveforward,theworkplacemustmoveawayfrompaper.
LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith
newhires.Onekeyexamplehegavewasthrough
|3
communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m
calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.
Soongfocusedonthecostefficiencyconcernsforleadership.
“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto
beused.”
Conclusion
QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare
industryinUnitedStatesisbehindbothother
industriesandcountriesinadoption.However,there
isclearlyaneedforAI.Theupcomingworkforceis
comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals
whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市广场道路铺设简易合同
- 地下科研设施引孔施工协议
- 雇佣合同模板
- 公积金缴纳比例调整影响
- 健身中心泳池翻新协议
- 城市供水管道改造工程施工合同
- 2025版机械运输租赁及安装指导服务合同范本3篇
- 2024年物流运输车辆维修保养合同模板3篇
- 2025版客车节能环保技术应用与推广承包协议3篇
- 2025版航空航天设备设计与制造合同范本3篇
- 伤口造口护理质量标准
- 热性惊厥诊断治疗与管理专家共识
- 《桥梁轻量化监测系统建设规范(征求意见稿)》
- 现代农业产业园建设规划方案(2篇)
- 物流配送中心租赁合同
- 幼儿园幼小衔接方案及反思
- 生命科学前沿技术智慧树知到期末考试答案章节答案2024年苏州大学
- 低空经济产业园项目可行性研究报告
- 中国神话故事绘本仓颉造字
- 消化道出血护理新进展
- MOOC 心理健康与创新能力-电子科技大学 中国大学慕课答案
评论
0/150
提交评论