艾昆纬-人工智能在QARA过程现实中的应用 Applying AI in Todays Reality of QARA Processes 2024_第1页
艾昆纬-人工智能在QARA过程现实中的应用 Applying AI in Todays Reality of QARA Processes 2024_第2页
艾昆纬-人工智能在QARA过程现实中的应用 Applying AI in Todays Reality of QARA Processes 2024_第3页
艾昆纬-人工智能在QARA过程现实中的应用 Applying AI in Todays Reality of QARA Processes 2024_第4页
艾昆纬-人工智能在QARA过程现实中的应用 Applying AI in Todays Reality of QARA Processes 2024_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IQVIA

TECHNOLOGIES

ExecutiveSummary

ApplyingAIinToday’s

RealityofQARAProcesses

AIinMedTechandpracticalrealitiesinQARA

ERDITGREMI,DirectorRegulatoryAffairs,Philips

DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft

RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips

DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)

Tableofcontents

Keytakeaways1

Overview1

Context1

BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1

ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand

industriesinAIadoption2

Thetechnologyisonlyasgoodasyourdata2

Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3

OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor

thefuture3

Conclusion4

Abouttheauthor5

Keytakeaways

•BeforetalkingaboutAI,wemustunderstandtheAI

playingfield.

•ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.

•Thetechnologyisonlyasgoodasyourdata.

•Cleandatastartswithvalidation,buthandlingreal-

worlddata(RWD)ismessy.

•Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.

Overview

Thegloballifesciencesindustryhasbeenslowto

adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate

datacleansing.

Context

QARAprofessionalsneedtocollaboratewithother

professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.

BeforetalkingaboutAI,wemustunderstandtheAI

playingfield

ThepaneldiscussionbeganwithDeniseMeade,

healthcareandlifesciencestechnologyleaderat

Microsoft,settingilluminatingtheAIplayingfield

fortheaudience.SheexplainedthatAIisabroad

category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin

data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.

“Toputitintoperspective,ittook

Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”

—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft

TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby

investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”

Meadecautionedthatusersneedtohavesome

understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin

digitalmedicaldevices,roboticsandultrasoundtechnology.

“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”

Meadeexplained.“Abigimportantpartisthatdata

isaportionandsuperimportanttotraininmachine

learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou

have.Youdon’tneedtotrainthem.”

|1

Thelifesciencesand

healthcareindustriesin

theU.S.arebehindother

countriesandindustriesinAIadoption

AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the

lifesciencesandhealthcareindustriesarebehindin

AIadoption.

“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento

usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill

needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”

WhiletheFDAishesitanttoadoptAI,regulatorsin

othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.

AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.

“Howdoyoumakesurethatthe

datathatyouhaveinputintothisAIorintothismodelaretruly

representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”

—ErditGremi,DirectorRegulatoryAffairs,Philips

Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.

“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat

youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.

Thetechnologyisonlyasgoodasyourdata

Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto

understandthedataanddatasources.DonSoong,

seniordirectorandgeneralmanagerofquality

managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof

cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”

PhilipshasQARAanddatascientistsinthesame

departmenttopromotecollaborationandreduce

downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias

throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters

percategory,whichwillgiveafairresponsewhenthealgorithmsrun.

RajeshMirsa,principaloflifesciencesqualityand

regulatoryservicesleaderatKPMGLLP,wasnot

surprisedthatthediscussionturnedtowardsdata

quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota

staticthing.Itchanges.”

2|ApplyingAIinToday’sRealityofQARAProcesses

Cleandatastartswith

validation,buthandlingReal-WorldData(RWD)ismessy

ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe

haveandmoveforward?”Beingabletoaskandanswer

thisquestionensurestherightqualitydecisions

aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest

availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein

somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.

Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In

addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.

“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?

WhatsortofhypothesisamItryingtocreate?”In

somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or

30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe

calculationswhilebuildingthemodel.

RWDhasthepotentialtobecollectedinamore

pristinemanner.Meadespokefromexperiencewith

companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving

folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto

asystem.”

OrganizationsareeducatingQARAprofessionalsto

understandAIandpreparingforthefuture

ThebiggestchallengeishowtokeepinfrontofAI.

Lugonotedthatconferencesandprivateeventsare

keytohelpingtheindustryadoptAI.Ascompanies

enterthespacemoreaggressive,Lugosaidhefinds

thatitisdifficulttoopendoorsandlowerwalls

becauselifesciencesareguardedaswholeinthe

UnitedStates,unliketherestoftheworld,whenit

comestoAIadoption.Theprocessisslow.However,

hedidnoteincreasingcybersecurityconcernsas

aconsequenceoftechnologicaladvancesincethe

discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand

audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.

Mirsasuggestedthatthemostpressingconcernis

theworkforce.Inthecurrentenvironment,QARA

professionals’workloadconsistsof30%to40%

paperwork.Hesuggestedthatthisis15to20years

behindthetechnologicalcurvecomparedtoother

industries.ThisisindirectoppositiontoFDA’s

approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother

industries,QARAprocessesthataredependenton

paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.

Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And

that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto

moveforward,theworkplacemustmoveawayfrompaper.

LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith

newhires.Onekeyexamplehegavewasthrough

|3

communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m

calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.

Soongfocusedonthecostefficiencyconcernsforleadership.

“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto

beused.”

Conclusion

QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare

industryinUnitedStatesisbehindbothother

industriesandcountriesinadoption.However,there

isclearlyaneedforAI.Theupcomingworkforceis

comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals

whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论