




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IQVIA
TECHNOLOGIES
ExecutiveSummary
ApplyingAIinToday’s
RealityofQARAProcesses
AIinMedTechandpracticalrealitiesinQARA
ERDITGREMI,DirectorRegulatoryAffairs,Philips
DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft
RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips
DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)
Tableofcontents
Keytakeaways1
Overview1
Context1
BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1
ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand
industriesinAIadoption2
Thetechnologyisonlyasgoodasyourdata2
Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3
OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor
thefuture3
Conclusion4
Abouttheauthor5
Keytakeaways
•BeforetalkingaboutAI,wemustunderstandtheAI
playingfield.
•ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.
•Thetechnologyisonlyasgoodasyourdata.
•Cleandatastartswithvalidation,buthandlingreal-
worlddata(RWD)ismessy.
•Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.
Overview
Thegloballifesciencesindustryhasbeenslowto
adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate
datacleansing.
Context
QARAprofessionalsneedtocollaboratewithother
professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.
BeforetalkingaboutAI,wemustunderstandtheAI
playingfield
ThepaneldiscussionbeganwithDeniseMeade,
healthcareandlifesciencestechnologyleaderat
Microsoft,settingilluminatingtheAIplayingfield
fortheaudience.SheexplainedthatAIisabroad
category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin
data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.
“Toputitintoperspective,ittook
Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”
—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft
TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby
investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”
Meadecautionedthatusersneedtohavesome
understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin
digitalmedicaldevices,roboticsandultrasoundtechnology.
“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”
Meadeexplained.“Abigimportantpartisthatdata
isaportionandsuperimportanttotraininmachine
learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou
have.Youdon’tneedtotrainthem.”
|1
Thelifesciencesand
healthcareindustriesin
theU.S.arebehindother
countriesandindustriesinAIadoption
AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the
lifesciencesandhealthcareindustriesarebehindin
AIadoption.
“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento
usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill
needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”
WhiletheFDAishesitanttoadoptAI,regulatorsin
othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.
AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.
“Howdoyoumakesurethatthe
datathatyouhaveinputintothisAIorintothismodelaretruly
representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”
—ErditGremi,DirectorRegulatoryAffairs,Philips
Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.
“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat
youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.
Thetechnologyisonlyasgoodasyourdata
Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto
understandthedataanddatasources.DonSoong,
seniordirectorandgeneralmanagerofquality
managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof
cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”
PhilipshasQARAanddatascientistsinthesame
departmenttopromotecollaborationandreduce
downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias
throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters
percategory,whichwillgiveafairresponsewhenthealgorithmsrun.
RajeshMirsa,principaloflifesciencesqualityand
regulatoryservicesleaderatKPMGLLP,wasnot
surprisedthatthediscussionturnedtowardsdata
quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota
staticthing.Itchanges.”
2|ApplyingAIinToday’sRealityofQARAProcesses
Cleandatastartswith
validation,buthandlingReal-WorldData(RWD)ismessy
ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe
haveandmoveforward?”Beingabletoaskandanswer
thisquestionensurestherightqualitydecisions
aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest
availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein
somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.
Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In
addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.
“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?
WhatsortofhypothesisamItryingtocreate?”In
somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or
30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe
calculationswhilebuildingthemodel.
RWDhasthepotentialtobecollectedinamore
pristinemanner.Meadespokefromexperiencewith
companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving
folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto
asystem.”
OrganizationsareeducatingQARAprofessionalsto
understandAIandpreparingforthefuture
ThebiggestchallengeishowtokeepinfrontofAI.
Lugonotedthatconferencesandprivateeventsare
keytohelpingtheindustryadoptAI.Ascompanies
enterthespacemoreaggressive,Lugosaidhefinds
thatitisdifficulttoopendoorsandlowerwalls
becauselifesciencesareguardedaswholeinthe
UnitedStates,unliketherestoftheworld,whenit
comestoAIadoption.Theprocessisslow.However,
hedidnoteincreasingcybersecurityconcernsas
aconsequenceoftechnologicaladvancesincethe
discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand
audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.
Mirsasuggestedthatthemostpressingconcernis
theworkforce.Inthecurrentenvironment,QARA
professionals’workloadconsistsof30%to40%
paperwork.Hesuggestedthatthisis15to20years
behindthetechnologicalcurvecomparedtoother
industries.ThisisindirectoppositiontoFDA’s
approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother
industries,QARAprocessesthataredependenton
paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.
Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And
that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto
moveforward,theworkplacemustmoveawayfrompaper.
LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith
newhires.Onekeyexamplehegavewasthrough
|3
communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m
calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.
Soongfocusedonthecostefficiencyconcernsforleadership.
“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto
beused.”
Conclusion
QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare
industryinUnitedStatesisbehindbothother
industriesandcountriesinadoption.However,there
isclearlyaneedforAI.Theupcomingworkforceis
comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals
whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂职业学院《意大利文学史》2023-2024学年第二学期期末试卷
- 教具及类似用具项目安全评估报告
- 长春工程学院《车辆设计》2023-2024学年第二学期期末试卷
- 北京化工大学《建筑模型》2023-2024学年第二学期期末试卷
- 江苏省苏州市市辖区市级名校2025年初三下学期期中考试物理试题(文理)试卷含解析
- 同济大学《医学美容护理》2023-2024学年第二学期期末试卷
- 天津音乐学院《当代世界文学》2023-2024学年第一学期期末试卷
- 河北公安警察职业学院《燃气输配课程设计》2023-2024学年第二学期期末试卷
- 燕山大学《法语》2023-2024学年第一学期期末试卷
- 长沙医学院《互联网金融服务营销》2023-2024学年第二学期期末试卷
- 幼儿园大班绘本《爱书的孩子》无声PPT
- DB3311T 132-2020 住宅小区物业服务规范
- (中职)门店运营实务教学ppt课件(完整版)
- 2022更新国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 3.无人机在风电系统应用解决方案
- 广东省异地就医备案登记表
- 人教鄂教版四年级下册科学全册教案
- 幼儿绘本故事:小鲁的池塘
- SIEMENS-S120变频器硬件、软件培训(高端培训)课件
- CA6132普通车床使用说明书
- 混凝土拆模令
评论
0/150
提交评论