上海市华师大三附中2025届数学高二上期末调研模拟试题含解析_第1页
上海市华师大三附中2025届数学高二上期末调研模拟试题含解析_第2页
上海市华师大三附中2025届数学高二上期末调研模拟试题含解析_第3页
上海市华师大三附中2025届数学高二上期末调研模拟试题含解析_第4页
上海市华师大三附中2025届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市华师大三附中2025届数学高二上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.2.在数列中,,则此数列最大项的值是()A.102 B.C. D.1083.加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为()A.3 B.4C.5 D.64.已知等比数列满足,,则数列前6项的和()A.510 B.126C.256 D.5125.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个6.已知点,点关于原点对称点为,则()A. B.C. D.7.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.8.如图是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为()A. B.C. D.9.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.1010.若构成空间向量的一组基底,则下列向量不共面的是()A.,, B.,,C.,, D.,,11.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.12.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.65二、填空题:本题共4小题,每小题5分,共20分。13.圆被直线所截得弦的最短长度为___________.14.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______15.已知曲线与曲线有相同的切线,则________16.“第七届全国画院美术作品展”于2021年12月2日至2022年2月20日在郑州美术馆展出.已知某油画作品高2米,宽6米,画的底部离地有2.7米(如图所示).有一身高为1.8米的游客从正面观赏它(该游客头顶E到眼睛C的距离为10),设该游客离墙距离CD为x米,视角为.为使观赏视角最大,x应为___________米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.18.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.19.(12分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.20.(12分)已知函数(a为非零常数)(1)若f(x)在处的切线经过点(2,ln2),求实数a的值;(2)有两个极值点,.①求实数a的取值范围;②若,证明:.21.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.22.(10分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C2、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D3、A【解析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆的两条切线的交点在圆上,所以,故选:A4、B【解析】设等比数列的公比为,由题设条件,求得,再结合等比数列的求和公式,即可求解.【详解】设等比数列的公比为,因为,,可得,解得,所以数列前6项的和.故选:B.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的前项和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确计算是解答的关键,着重考查推理与运算能力.5、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.6、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C7、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系8、D【解析】由题建立平面直角坐标系,设抛物线方程为,结合条件即求.【详解】建立如图所示的直角坐标系:设抛物线方程为,由题意知:在抛物线上,即,解得:,,当水位下降1米后,即将代入,即,解得:,∴水面宽为米.故选:D.9、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.10、C【解析】根据空间向量共面的条件即可解答.【详解】对于A,由,所以,,共面;对于B,由,所以,,共面;对于D,,所以,,共面,故选:C.11、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D12、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.14、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.15、0【解析】设切点分别为,.利用导数的几何意义可得,则.由,,计算可得,进而求得点坐标代入方程即可求得结果.【详解】设切点分别为,由题意可得,则,即因为,,所以,即,解得,所以,则,解得故答案为:016、【解析】设,进而得到,,从而求出,再利用基本不等式即可求得答案.【详解】设,则,,所以,当且仅当时取“=”.所以该游客离墙距离为米时,观赏视角最大.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.18、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在递增,所以成立,符合题意.②当时,,当时,,∴,使,即时,在递减,,不符合题意.综上得【点睛】本题考查利用导数讨论函数的单调性,根据导数解决不等式恒成立问题,属于中档题.19、(1)(2)【解析】(1)设点坐标为,根据两直线的斜率之积为得到方程,整理即可;(2)设,,,根据设、在椭圆上,则,再由,则,即可表示出直线、的方程,联立两直线方程,即可得到点的纵坐标,再根据弦长公式得到,令,则,最后利用基本不等式计算可得;【小问1详解】解:设点坐标为,定点,,直线与直线的斜率之积为,,【小问2详解】解:设,,,则,,所以又,所以,又即,则直线:,直线:,由,解得,即,所以令,则,所以因为,当且仅当即时取等号,所以的最大值为;20、(1)(2)①(0,1);②证明见解析【解析】小问1先求出切线方程,再将点(2,ln2),代入即可求出a的值;小问2的①通过求导,再结合函数的单调性求出a的取值范围;②结合已知条件,构造新函数即可得到证明.【小问1详解】,∴切线方程为,将点代入解得:【小问2详解】①当时,即时,,f(x)在(-1,+∞)上单调递增;f(x)无极值点,当时,由得,,故f(x)在(-1,-)上单调递增,在(-,)上单调递减,在(,+∞)上单调递增,f(x)有两个极值点;.当时,由得,,f(x)(,)上单调递减,在(,+∞)上单调递此时,f(x)有1个极值点,综上,当时,f(x)有两个极值点,即,即a的范围是(0,1)②由(2)可知,又由可知,可得.要证,即证,即证,即证即证令函数,x(0,1),故t(x)在(0,1)上单调递增,又所以在上恒成立,即所以.21、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论