2025届安徽省合肥市六校联考高二数学第一学期期末经典试题含解析_第1页
2025届安徽省合肥市六校联考高二数学第一学期期末经典试题含解析_第2页
2025届安徽省合肥市六校联考高二数学第一学期期末经典试题含解析_第3页
2025届安徽省合肥市六校联考高二数学第一学期期末经典试题含解析_第4页
2025届安徽省合肥市六校联考高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥市六校联考高二数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.332.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题3.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.4.设函数,则曲线在点处的切线方程为()A. B.C. D.5.设命题,,则为()A., B.,C., D.,6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.7.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.48.已知双曲线E的渐近线为,则其离心率为()A. B.C. D.或9.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.11.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.12.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=x3-3x2+2,则函数f(x)的极大值为______14.若函数在区间上单调递减,则实数的取值范围是________;15.若,,,,与,,,,,,均为等差数列,则______16.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数18.(12分)已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:19.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.20.(12分)已知几何体中,平面平面,是边长为4的菱形,,是直角梯形,,,且(1)求证:;(2)求平面与平面所成角的余弦值21.(12分)已知椭圆的上、下顶点分别为A,B,离心率为,椭圆C上的点与其右焦点F的最短距离为.(1)求椭圆C的标准方程;(2)若直线与椭圆C交于P,Q两点,直线PA与QB的斜率分别为,,且,那么直线l是否过定点,若过定点,求出该定点坐标;否则,请说明理由.22.(10分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C2、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A3、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A4、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A5、B【解析】全称命题的否定时特称命题,把任意改为存在,把结论否定.【详解】命题,,则为“,”.故选:B6、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D7、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.8、D【解析】根据双曲线标准方程与渐近线的关系即可求解.【详解】当双曲线焦点在x轴上时,渐近线为,故离心率为;当双曲线焦点在y轴上时,渐近线为,故离心率为;故选:D.9、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B10、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C11、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A12、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用导数研究函数的单调区间,从而得到极大值.【详解】,令,解得:,00极大值极小值所以当时,函数取得极大值,即函数的极大值为.故答案为:14、【解析】函数,又函数在区间上单调递减∴在区间上恒成立即,解得:,当时,经检验适合题意故答案为【点睛】f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解15、##【解析】由题意利用等差数列的定义和通项公式,求得要求式子的值【详解】设等差数列,,,,的公差为,等差数列,,,,,,的公差为,则有,且,所以,则,故答案为:16、【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增函数;当时。,为减函数,所以在处取得极大值,也是最大值,最大值为,因为对任意正实数,恒成立,所以,得.【小问2详解】,,由,得,由,得或,所以在上为增函数,在上为减函数,在上为增函数,所以在时取得极大值为,在时取得极小值为,因为当大于0趋近于0时,趋近于负无穷,当趋近于正无穷时,趋近于正无穷,所以当,即时,有且只有一个零点;当,即时,有且只有两个零点;当,即时,有且只有三个零点;当,即时,有且只有两个零点;当,即时,有且只有一个零点.综上所述:当或时,有且只有一个零点;当或时,有且只有两个零点;当时有且只有三个零点.18、(1)单调递增区间是(4,+∞),单调递减区间是(0,4);(2)证明见解析.【解析】(1)求的导函数,结合定义域及导数的符号确定单调区间;(2)法一:讨论、时的零点情况,即可得,构造,利用导数研究在(0,2a)恒成立,结合单调性证明不等式;法二:设,由零点可得,进而应用分析法将结论转化为证明,综合换元法、导数证明结论即可.【小问1详解】函数的定义域为(0,+∞),当a=2时,,则令得,x>4;令得,0<x<4;所以,单调递增区间是(4,+∞);单调递减区间是(0,4).【小问2详解】法一:当a≤0时,>0在(0,+∞)上恒成立,故函数不可能有两个不相等的零点,当a>0时,函数在(2a,+∞)上单调递增,在(0,2a)上单调递减,因为函数有两个不相等的零点,则,不妨设,设,(0<x<2a),则,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上单调递减,即>=0,所以,即,又,故,因为,所以,因为函数在(2a,+∞)上单调递增,所以,即法二:不妨设,由题意得,,得,即,要证,只需证,即证:,即,令,,则,所以在区间(1,+∞)单调递减,故<=0,即恒成立因此,所以.【点睛】关键点点睛:第二问,法一:应用极值点偏移方法构造,将问题转化为在(0,2a)恒成立,法二:根据零点可得,再由分析法将问题化为证明,构造函数,综合运用换元法、导数证明结论.19、(1)(2)【解析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...20、(1)证明见解析;(2).【解析】(1)根据菱形的性质,结合面面垂直的性质定理、线面垂直的判定定理和性质进行证明即可;(2)建立空间直角坐标系,根据空间向量夹角公式进行求解即可.【详解】(1)证明:连接,交于点,∵四边形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中点,连接,∵是边长为4的菱形,,∴,,以为原点,,,所在直线分别为,,轴建立如图所示的空间直角坐标系,则,,,,∴,,设平面的法向量为,则,即,令,则,,∴,同理可得,平面的一个法向量为,∴,由图知,平面与平面所成角为锐角,故平面与平面所成角余弦值为21、(1)(2)恒过点【解析】(1)设为椭圆上的点,根据椭圆的性质得到,再根据的取值范围,得到,再根据离心率求出、,最后根据,求出,即可得解;(2)设、,表示出、,联立直线与椭圆方程,消元列出韦达定理,由,即可得到,再根据,即可得到,从而得到,再将、代入计算可得;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,所以,因为,所以,又,所以、,因为,所以,所以椭圆方程为;【小问2详解】解:设、,依题意可得、,所以、,联立得,则即,所以、,因为,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论