2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题含解析_第1页
2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题含解析_第2页
2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题含解析_第3页
2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题含解析_第4页
2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省合肥市巢湖市数学高二上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.2.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.3.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.4.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.55.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.6.若实数,满足约束条件,则的最小值为()A.-3 B.-2C. D.17.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.8.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.9.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.10.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.1011.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.12.若直线经过,,两点,则直线的倾斜角的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数、满足,则的取值范围为___________.14.直线被圆所截得的弦的长为_____15.曲线在处的切线方程为______.16.数列的前项和为,则该数列的通项公式___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和18.(12分)已知a>0,b>0,a+b=1,求证:.19.(12分)已知是等差数列,,.(1)求的通项公式;(2)设的前项和,求的值.20.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.21.(12分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程22.(10分)设椭圆:的左顶点为,右顶点为.已知椭圆的离心率为,且以线段为直径的圆被直线所截得的弦长为.(1)求椭圆的标准方程;(2)设过点的直线与椭圆交于点,且点在第一象限,点关于轴对称点为点,直线与直线交于点,若直线斜率大于,求直线的斜率的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.2、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D3、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A4、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.5、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C6、B【解析】先画出可行域,由,作出直线向下平移过点A时,取得最小值,然后求出点A的坐标,代入目标函数中可求得答案【详解】由题可得其可行域为如图,l:,当经过点A时,取到最小值,由,得,即,所以的最小值为故选:B7、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B8、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.9、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D10、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.11、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B12、D【解析】应用两点式求直线斜率得,结合及,即可求的范围.【详解】根据题意,直线经过,,,∴直线的斜率,又,∴,即,又,∴;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用换元法以及基本不等式,求出结果【详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:14、【解析】圆转化为标准式方程,圆心到直线的距离为,圆的半径为,因此所求弦长为考点:1.圆的方程;2.直线被圆截得的弦长的求法;15、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.16、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:18、见解析【解析】将代入式子,得到,,进而进行化简,最后通过基本不等式证明问题.【详解】∵,,,∴,.∴=,当且仅当,即时取“=”19、(1);(2).【解析】(1)设等差数列的公差为,利用题中等式建立、的方程组,求出、的值,然后根据等差数列的通项公式求出数列的通项公式;(2)利用等差数列前项和公式求出,然后由求出的值.【详解】(1)设等差数列的公差为,则,解得,,数列的通项为;(2)数列的前项和,由,化简得,即,.【点睛】本题考查等差数列的通项公式的求解,考查等差数列的前项和公式,常用的方法就是利用首项和公差建立方程组求解,考查运算求解能力,属于中等题.20、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设的公比为,因为,,则,又因为,解得,所以的通项公式为.【小问2详解】解:由,可得,则,所以.21、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可得圆C1的标准方程;(2)当直线的斜率不存在时,求得直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设出直线方程,由已知弦长可得圆心到直线的距离,再由点到直线的距离公式列式求k,则直线方程可求【小问1详解】∵原点O到直线的距离为,∴圆C1的标准方程为;【小问2详解】当直线l的斜率不存在时,直线方程为x=1,代入,得,即直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设直线方程为,即∵直线l被圆C1所截得的弦长为,圆的半径为2,则圆心到直线l的距离,解得∴直线l的方程为,即综上,直线l的方程为或22、(1);(2).【解析】(1)根据直线被圆截得的弦长为,由解得,再由离心率结合求解。(2)设,则,得到直线:;直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论