




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省永春县一中高一数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.2.下列函数中,既是偶函数又在区间上单调递增的是()A. B.C. D.3.若实数,满足,则关于的函数图象的大致形状是()A. B.C. D.4.已知,则函数()A. B.C. D.5.已知=(4,5),=(-3,4),则-4的坐标是()A(16,11) B.(-16,-11)C.(-16,11) D.(16,-11)6.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或47.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.8.若,则()A. B.C.或1 D.或9.已知集合,,则A. B.C. D.10.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的偶函数在上递减,且,则不等式的解集为__________12.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________13.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__14.由直线上的任意一个点向圆引切线,则切线长的最小值为________.15.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.16.函数(且)的图象必经过点___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线l经过两点(2,1)、(6,3).(1)求直线l的方程;(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程18.某同学作函数f(x)=Asin(x+)在一个周期内的简图时,列表并填入了部分数据,如下表:0-3(1)请将上表数据补充完整,并求出f(x)的解析式;(2)若f(x)在区间(m,0)内是单调函数,求实数m的最小值.19.已知函数.(1)用五点法作函数在区间上的图象;(2)解关于的方程.20.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.21.已知是第二象限,且,计算:(1);(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据相等向量的定义直接判断即可.【详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.2、A【解析】根据基本初等函数的单调性与奇偶性的定义判断可得;【详解】解:对于A:定义域为,且,即为偶函数,且在上单调递增,故A正确;对于B:定义域为,且,即为偶函数,在上单调递减,故B错误;对于C:定义域为,定义域不关于原点对称,故为非奇非偶函数,故C错误;对于D:定义域为,但是,故为非奇非偶函数,故D错误;故选:A3、B【解析】利用特殊值和,分别得到的值,利用排除法确定答案.【详解】实数,满足,当时,,得,所以排除选项C、D,当时,,得,所以排除选项A,故选:B.【点睛】本题考查函数图像的识别,属于简单题.4、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A5、D【解析】直接利用向量的坐标运算求解.【详解】-4.故选:D6、C【解析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题7、C【解析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.8、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.9、C【解析】先写出A的补集,再根据交集运算求解即可.【详解】因为,所以,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.10、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理12、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.13、﹣≤a≤2【解析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.14、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.15、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.16、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直线过的两点坐标求得直线斜率,在借助于点斜式方程可得到直线方程;(2)借助于圆的几何性质可知圆心在直线上,又圆心在直线上,从而可得到圆心坐标,圆心与的距离为半径,进而可得到圆的方程试题解析:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为考点:1.直线方程;2.圆的方程18、(1)表格见解析,(2)【解析】(1)由题意,根据五点法作图,利用正弦函数的性质,补充表格,并求出函数的解析式(2)由题意利用正弦函数的单调性,求出实数的最小值【小问1详解】解:作函数,,的简图时,根据表格可得,,,结合五点法作图,,,故函数的解析式为列表如下:00300【小问2详解】解:因为,所以,若在区间内是单调函数,则,且,解得,故实数的最小值为19、(1)画图见解析;(2)或.【解析】(1)根据列表、描点、连线的基本步骤,画出函数在的大致图像即可;(2)由题意得:,解得或,,分类求解即可得解方程的解集.【详解】(1),∴,,的变化如下表:0200的图象如图:(2)令,则,或,,或,,的解集为:或.【点睛】用“五点法”作的简图,主要是通过变量代换,设,由取,,,,来求出相应的,通过列表,计算得出五点坐标,描点后得出图象20、(1)答案见解析;(2).【解析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年平顶山职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 细胞抗衰课程介绍
- 2025年宁波卫生职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年天津滨海职业学院高职单招(数学)历年真题考点含答案解析
- 2025年天津工程职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 27341培训课件教学课件
- 创意福字课程介绍
- 人教版数学六年级下册第4、5单元比例广角-鸽巢问题测试题含答案
- 华东交通大学《钢琴伴奏实验》2023-2024学年第二学期期末试卷
- 5G知识课件教学课件
- 环氧地坪施工合同范本(2024版)
- 《民航客舱设备操作与管理》课件-项目四 飞机舱门及撤离滑梯
- 【年产100吨β-葡萄糖苷酶生产工艺设计17000字(论文)】
- 南部升钟湖景区环湖旅游公路工程对南充升钟湖国家湿地公园生态影响评价报告
- 手术室护理腹腔镜疝修补术
- 工业机器人考试题库(含答案)
- 2024院感知识课件
- 电网同期线损培训课件
- 病媒生物监测与控制技术考核试题及答案
- 电机制造的重要性和应用领域
- 油气中毒应急救援预案范本
评论
0/150
提交评论