2025届湖南省永州市祁阳一中数学高二上期末联考试题含解析_第1页
2025届湖南省永州市祁阳一中数学高二上期末联考试题含解析_第2页
2025届湖南省永州市祁阳一中数学高二上期末联考试题含解析_第3页
2025届湖南省永州市祁阳一中数学高二上期末联考试题含解析_第4页
2025届湖南省永州市祁阳一中数学高二上期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省永州市祁阳一中数学高二上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个2.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.863.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件4.等差数列的前项和,若,则A.8 B.10C.12 D.145.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.6.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.147.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定8.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.9.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.10.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.11.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________14.将连续的正整数填入n行n列的方阵中,使得每行、每列、每条对角线上的数之和相等,可得到n阶幻方.记n阶幻方每条对角线上的数之和为,如图:,那么的值为___________.15.若关于的不等式的解集为R,则的取值范围是______.16.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于A,B两点,线段AB的长为5,若,那么△的周长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根(1)若命题为假命题,求实数的取值范围;(2)如果“”为真命题,且“”为假命题,求实数的取值范围18.(12分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.19.(12分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.20.(12分)如图所示,在直三棱柱中,,,(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示)21.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.22.(10分)已知数列满足,,设.(1)证明数列为等比数列,并求通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.2、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.3、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.4、C【解析】假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.5、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.6、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B7、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C8、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.9、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D10、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.11、B【解析】因但12、A【解析】直接求出,,进而求出渐近线方程.【详解】中,,,所以渐近线方程为,故.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用导数的几何意义根据r的2次近似值的定义求解即可【详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:14、34【解析】根据每行数字之和相等,四行数字之和刚好等于1到16之和可得.【详解】4阶幻方中,4行数字之和,得.故答案为:3415、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:16、16【解析】利用椭圆的定义可知,又△的周长,即可求焦点三角形的周长.【详解】由椭圆定义知:,所以△的周长为.故答案为:16.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)先分别求出命题为真命题和命题为真命题时参数的范围,则可得当命题为假命题,实数的取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假,再分真,且假,和真,且假两种情况分别求出参数的范围,再综合得到答案.【详解】命题为真命题:对任意实数都有恒成立或;命题为真命题:关于的方程有实数根;(1)命题为假命题,则实数取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假.如果真,且假,有,且,则如果真,且假,有或,且,则综上,实数的取值范围为18、(1)(2)【解析】(1)根据已知条件求得,由此求得的方程.(2)结合点差法求得直线的斜率,从而求得直线的方程.【小问1详解】因为C的离心率为2,所以,可得.将代入可得,由题设.解得,,,所以C的方程为.【小问2详解】设,,则,.因此,即.因为线段AB的中点为,所以,,从而,于是直线AB的方程是.19、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用斜率推理作答.【小问1详解】依题意,椭圆的左焦点,由椭圆定义得:即,则,所以椭圆的标准方程为.【小问2详解】由(1)知,,直线不垂直y轴,设直线方程为,,由消去x得:,则,,直线的斜率,直线的方程:,而直线,即,直线的斜率,而,即,直线的斜率,直线的方程:,则点,直线的斜率,直线的斜率,,而,即,所以三点共线.【点睛】思路点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系20、(1);(2)【解析】(1)利用S=2S△ABC+S侧,可得三棱柱ABC﹣A1B1C1的表面积S;(2)连接BC1,确定∠BA1C1就是异面直线A1B与AC所成的角(或其补角),在△A1BC1中,利用余弦定理可求结论【详解】(1)在△ABC中,因为AB=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S侧=4+(2+2+4)×4=24+12(2)连接BC1,因为AC∥A1C1,所以∠BA1C1就是异面直线A1B与AC所成的角(或其补角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即异面直线A1B与AC所成角的大小为arccos【点睛】本题考查三棱柱的表面积,考查线线角,解题的关键是正确作出线线角,属于中档题21、(1)(2)【解析】(1)利用正弦定理、余弦定理化简已知条件,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论