湖北省黄冈、襄阳市2025届高一上数学期末统考试题含解析_第1页
湖北省黄冈、襄阳市2025届高一上数学期末统考试题含解析_第2页
湖北省黄冈、襄阳市2025届高一上数学期末统考试题含解析_第3页
湖北省黄冈、襄阳市2025届高一上数学期末统考试题含解析_第4页
湖北省黄冈、襄阳市2025届高一上数学期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈、襄阳市2025届高一上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.2.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.3.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形4.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.5.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.6.若曲线上所有点都在轴上方,则的取值范围是A. B.C. D.7.已知角终边经过点,且,则的值是()A. B.C. D.8.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.9.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.10.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知与是两个不共线的向量,且向量(+λ)与(-3)共线,则λ的值为_____.12.______________13.化简的结果为______.14.已知fx是定义域为R的奇函数,且当x>0时,fx=ln15.已知函数,若函数恰有4个不同的零点,则实数的取值范围是________.16.若是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线,则在平面内,一定不存在与直线平行的直线②若直线,则在平面内,一定存在无数条直线与直线垂直③若直线,则在平面内,不一定存在与直线垂直的直线④若直线,则在平面内,一定存在与直线垂直的直线三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)18.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围19.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值20.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.21.已知直线经过直线与的交点.(1)点到直线的距离为3,求直线的方程;(2)求点到直线的距离的最大值,并求距离最大时的直线的方程

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误2、A【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.3、A【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征4、C【解析】令,求得,得到是奇函数,再令,证得在上递减判断.【详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C5、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行6、C【解析】曲线化标准形式为:圆心,半径,,即,∴故选C7、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A8、B【解析】利用交集定义直接求解【详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【点睛】本题考查交集的求法,考查交集定义,是基础题9、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.10、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、-【解析】由向量共线可得+λ=k((-3),计算即可.【详解】由向量共线可得+λ=k((-3),即+λ=k-3k,∴解得λ=-.故答案为:-12、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.13、0【解析】由对数的运算求解即可.【详解】故答案为:14、1【解析】首先根据x>0时fx的解析式求出f1【详解】因为当x>0时,fx=ln又因为fx是定义域为R的奇函数,所以f故答案为:1.15、【解析】本题首先可根据函数解析式得出函数在区间和上均有两个零点,然后根据在区间上有两个零点得出,最后根据函数在区间上有两个零点解得,即可得出结果.【详解】当时,令,得,即,该方程至多两个根;当时,令,得,该方程至多两个根,因为函数恰有4个不同的零点,所以函数在区间和上均有两个零点,函数在区间上有两个零点,即直线与函数在区间上有两个交点,当时,;当时,,此时函数的值域为,则,解得,若函数在区间上也有两个零点,令,解得,,则,解得,综上所述,实数的取值范围是,故答案为:.【点睛】本题考查根据函数零点数目求参数的取值范围,可将其转化为两个函数的交点数目进行求解,考查函数最值的应用,考查推理能力与计算能力,考查分类讨论思想,是难题.16、②④【解析】①当时,在平面内存在与直线平行的直线.②若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.③当直线为平面的交线时,在平面内一定存在与直线垂直的直线.④当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线考点:直线与平面平行与垂直关系三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值18、(1)1(2)【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围.【小问1详解】由可得,即对恒成立,可解得:【小问2详解】当时,有由,即有,且故有对恒成立,①若,则显然成立②若,则函数在上单调递增故有,解得:;综上:实数a的取值范围为19、(1);(2).【解析】(1)根据所选的条件求得,,再由差角正弦公式求的值;(2)由题设可得,进而可得,结合及差角余弦公式,即可求值.【小问1详解】由,则:若选①,由,,得,,若选②,由得:,所以,若选③,由得,,,,所以.【小问2详解】∵,∴,又,∴∴.20、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.21、(1)x=2或4x-3y-5=0(2)见解析【解析】(1)设过两直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论