下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:曲线的极坐标方程的意义教学目标:了解极坐标方程的意义教学重点:1.能在极坐标中给出简单图形的极坐标方程;2.简单图形的极坐标方程极坐标方程与直角坐标方程的互化教学过程:一、复习引入:问题情境1、直角坐标系建立可以描述点的位置极坐标也有同样作用?2、直角坐标系的建立可以求曲线的方程极坐标系的建立是否可以求曲线方程?学生回顾1、直角坐标系和极坐标系中怎样描述点的位置?2、曲线的方程和方程的曲线(直角坐标系中)定义3、求曲线方程的步骤二、讲解新课:1、引例:以极点O为圆心5为半径的圆上任意一点极径为5,反过来,极径为5的点都在这个圆上。因此,以极点为圆心,5为半径的圆可以用方程来表示。2、提问:曲线上的点的坐标都满足这个方程吗?3、定义:一般地,如果一条曲线上任意一点都有一个极坐标适合方程;适合方程的点都在曲线上,那么这个方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。4、求曲线的极坐标方程:例1.求经过点且与极轴垂直的直线的极坐标方程。变式训练:已知点的极坐标为,那么过点且垂直于极轴的直线极坐标方程。例2.求圆心在且过极点的圆的极坐标方程。变式训练:求圆心在且过极点的圆的极坐标方程。例3.(1)化在直角坐标方程为极坐标方程,(2)化极坐标方程为直角坐标方程。变式训练:1.将下列极坐标方程化为直角坐标方程:(1)(2)(3)4.将下列直角坐标方程化为极坐标方程:(1)(2)四、小结:本节课学习了以下内容:求曲线的极坐标方程:上述步骤运用流程图可以简略地表示为:建系设点列式化简证明通常,第五步的过程不必写出,只要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抑郁症心理护理效果评估-洞察分析
- 移动支付安全风险-洞察分析
- 新材料对制造业升级影响研究-洞察分析
- 异常行为检测与分析-洞察分析
- 碳中和战略与能源转型-洞察分析
- 医疗卫生人才队伍建设-洞察分析
- 碳酸饮料行业品牌营销策略-洞察分析
- 土地开发与政策引导-洞察分析
- 文物保存技术发展趋势-洞察分析
- 关于重阳节的广播稿(8篇)
- 纪念毛同志诞辰131周年主题班会-缅怀伟大领袖奋斗新的征程课件
- 2024年PE工程师培训教材-助力工程师成长
- 大部分分校:地域文化形考任务一-国开(CQ)-国开期末复习资料
- 【物理】期末复习练习 质量与密度 2024-2025学年人教版物理八年级上册
- 急性有机磷中毒急救护理
- 中国计量大学现代科技学院《宏观经济学》2022-2023学年第一学期期末试卷
- 设备合作入股合同范例
- 应用写作-终结性考核-国开(SC)-参考资料
- 2024年车辆工程大一大学生职业生涯规划书
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
评论
0/150
提交评论