![人教版九年级下册数学第二十七章测试卷及答案_第1页](http://file4.renrendoc.com/view12/M0B/32/31/wKhkGWcm_XmAFwHDAAFDq9eSQO8746.jpg)
![人教版九年级下册数学第二十七章测试卷及答案_第2页](http://file4.renrendoc.com/view12/M0B/32/31/wKhkGWcm_XmAFwHDAAFDq9eSQO87462.jpg)
![人教版九年级下册数学第二十七章测试卷及答案_第3页](http://file4.renrendoc.com/view12/M0B/32/31/wKhkGWcm_XmAFwHDAAFDq9eSQO87463.jpg)
![人教版九年级下册数学第二十七章测试卷及答案_第4页](http://file4.renrendoc.com/view12/M0B/32/31/wKhkGWcm_XmAFwHDAAFDq9eSQO87464.jpg)
![人教版九年级下册数学第二十七章测试卷及答案_第5页](http://file4.renrendoc.com/view12/M0B/32/31/wKhkGWcm_XmAFwHDAAFDq9eSQO87465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级下册数学第二十七章测试题一、单选题1.如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若,则下列说法不正确的是()A. B. C. D.2.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A. B. C. D.3.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm4.如图,在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.两三角形重叠部分是四边形AGDH,当四边形AGDH的面积最大时,最大值是多少?()A.12 B.11.52 C.13 D.85.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为()A.2﹣2 B.6﹣2√5 C. D.4﹣26.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,DF∥AC,若△ADE与四边形DBCE的面积相等,则△DBF与△ADE的面积之比为()A. B. C. D.3-27.如图,正方形OABC的边长为8,点P在AB上,CP交OB于点Q.若S△BPQ=,则OQ长为()A.6 B.6 C. D.8.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A.如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB.如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C.如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D.如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC9.如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.如图,已知△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,点B的坐标为(﹣3,2),则点C的坐标为()A.(3,﹣2) B.(6,﹣4) C.(4,﹣6) D.(6,4)11.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为A.320cm B.320m C.2000cm D.2000m12.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(
)A.2 B.4 C.6 D.8二、填空题13.如图,△ABC中,D、E分别是AB、AC上的点(DE不平行BC),若使△ADE与△ABC相似,则需要添加_____即可(只需添加一个条件).14.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,且BD=4,CD=2,那么AF=_____.15.如图,矩形ABCD中,AB=2,BC=4,剪去一个矩形ABEF后,余下的矩形EFDC∽矩形BCDA,则FC的长为_____.16.若,则=_____.17.如图,平行四边形ABCD中,点E是AD边上一点,连结EC、BD交于点F,若AE:ED=5:4记△DFE的面积为S1,△BCF的面积为S2,△DCF的面积为S3,则DF:BF=_____,S1:S2:S3=_____.18.如图,在四边形ABCD中,AD∥BC∥EF,EF分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是_____.19.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.三、解答题20.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.21.如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.22.如图,在中,、分别是边、上的点,,点在线段上,过点作、分别交于点、,如果.求的值.23.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.24.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.25.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果,求证:AB=BD.参考答案1.C【分析】根据题意可以得到△ADE∽△ABC,然后根据题目中的条件即可推出选项中的说法是否正确,从而可以解答本题.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,=,==,=()2=,∴=,故A、B、D选项正确,C选项错误,故选C.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用相似三角形的性质解答问题.2.A【详解】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,设ED=k,则AE=2k,BC=3k,∴==,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.3.A【分析】利用相似三角形的性质构建方程即可解决问题.【详解】如图,设AD交PN于点K,∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k,∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴,∴,解得k=20mm,∴PM=3k=60mm,故选A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.A【分析】先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8-GA,得到S矩形AGDH=-AG2+8AG,确定极值,AG=3时,面积最大,于是得到结论.【详解】∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∵GA⊥AC,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8-GA,S矩形AGDH=AG×AH=AG×(8-AG)=-AG2+8AG,当AG=-=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选A.【点睛】此题主要考查了相似三角形的性质和判定,平行四边形,矩形,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线,5.A【分析】利用黄金分割的定义得到PA=AB,然后把AB=4代入计算即可.【详解】∵点P是线段AB的黄金分割点(AP>BP),∴PA=AB=×4=2-2.故选A.【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.6.D【分析】根据矩形的性质得到DE=CF,根据相似三角形的性质得到=()2=,求得=,设DE=k,BC=2k,得到BF=2k-k,根据相似三角形的性质即可得到结论.【详解】∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=CF,∵△ADE与四边形DBCE的面积相等,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,设DE=k,BC=2k,∴BF=2k-k,∵DF∥AC,∴△BDF∽△BAC,∴△DBF∽△ADE,∴=()2==,故选D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.B【分析】根据正方形的性质得到AB∥OC,推出△PBQ∽△COQ,根据相似三角形的性质得到OC=3PB,求得PB=,于是得到结论.【详解】∵四边形ABCO是正方形,∴AB∥OC,∴△PBQ∽△COQ,∴=()2=,∴OC=3PB,∵OC=8,∴PB=,∵==,BO=8,∴OQ=×8=6,故选B.【点睛】本题考查相似三角形的判定和性质、正方形的性质、平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.D【分析】根据相似三角形的判定定理证明相应的三角形相似,根据相似三角形的性质判断即可.【详解】如图:A、∵AB2=BD•BC,∴,又∠B=∠B,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴,又∠B=∠B,∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选D.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.9.A【分析】根据角平分线和平行证明△EBO和△OFC是等腰三角形,再由周长关系得y=8-x,即可解题.【详解】解:∵点O是∠ABC和∠ACB两个内角平分线的交点,EF∥BC,∴∠OBC=∠EOB,∠OBC=∠EBO,∴△EBO是等腰三角形,同理,△OFC是等腰三角形,即BE=EO,CF=OF,∴△AEF的周长y=AE+EF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴y=8-x,即x是关于y的一次函数,图像是递减的直线,故选A【点睛】本题考查了一次函数的实际应用,中等难度,证明等腰三角形,找到函数关系是解题关键.10.B【分析】利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).【详解】∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO为1:2,∵点B的坐标为(-3,2),∴点C的坐标为(6,-4),故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.D【分析】首先设它的实际长度是,然后根据比例尺的定义,即可得方程:,解此方程即可求得答案,注意统一单位.【详解】设它的实际长度是,根据题意得:,解得:,,它的实际长度为.故选.【点睛】此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.12.D【分析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.13.∠ADE=∠C【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【详解】∵∠A是公共角,如果∠ADE=∠C,∴△ADE∽△ABC,故答案为∠ADE=∠C.【点睛】本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即①有两组角对应相等的三角形相似,②三边对应成比例的两个三角形相似,③两组边对应成比例且夹角相等的两个三角形相似.14.【分析】根据三角形的角性质定理、相似三角形的性质进行求解.【详解】∵△ABC和△ADE都是等边三角形,∴∠B=∠ADE=∠C=60°,∵∠B+∠BAD=∠ADF+∠FDC,∴∠BAD=∠FDC,∴△ABD∽△FDC,∴,∵BD4,CD2,且△ABC是等边三角形,∴AB=BC=BD+DC=6,∴,∴FC=,AF=AC-FC=.【点睛】本题主要考查的是三角形的角性质定理、相似三角形的性质,熟练掌握是本题的解题关键.15.【分析】根据相似多边形的性质得,即,然后利用比例性质求出CE,再利用勾股定理计算FC即可.【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,∵四边形EFCD是矩形,∴EF=CD=2,CF=DE,∵余下的矩形EFCD∽矩形BCDA,∴,即,∴CE=1,∴FC的长===,故答案为.【点睛】本题考查了相似多边形的性质:如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形;相似多边形对应边的比叫做相似比.16.4【分析】设,则a=2k,b=3k,再代入式子中即可求得结果.【详解】设,则a=2k,b=3k,===4故答案为4【点睛】此题考查了比例的基本性质,熟练掌握性质是解答此题的关键.17.4:916:81:36.【分析】由AE:ED=5:4,得到DE:AD=4:9,根据平行四边形的性质得到AD∥BC,AD=BC,根据相似三角形的性质即可得到结论.【详解】∵AE:ED=5:4,∴DE:AD=4:9,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴,∴=()2=,=,∴S1:S2:S3=16:81:36,故答案为4:9,16:81:36.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.18.【分析】首先得出△AEM∽△ABC,△CFM∽△CDA,进而利用相似三角形的性质求出即可.【详解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴,设AM=2x,则AC=5x,故MC=3x,∴,故答案为.【点睛】此题主要考查了相似三角形的判定与性质,得出是解题关键.19.【分析】由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【详解】(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC,∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴,又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.21.(1)证明见解析;(2)证明见解析.【分析】(1)根据直角三角形的性质得到AE=FE,根据相似三角形的性质得到∠EAG=∠ADG,求得∠DAG=∠FEG,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB=90°,于是得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【详解】(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.22..【分析】设BG=2k,GH=4k,HC=3k,根据平行四边形的性质可得DF=BG=2k,EF=HC=3k,可得DE=5k,根据△ADE∽△FGH可得.【详解】解:∵,∴∴,∴∴同理:∴∴∵,,∴同理:∵,∴设,,∴,,∴∴【点睛】此题考查相似三角形的判定和性质,平行四边形判定和性质,熟练掌握相似三角形的性质是解题的关键.23.(1)AD=4;(2)矩形EFGH的面积.【分析】(1)设BC=3x,根据三角形的面积公式列式计算即可;(2)设GF=y,根据矩形的性质得到HG∥BC,得到△AHG∽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑行业工程质量保证协议
- 项目收尾阶段工作总结与经验教训总结报告
- 眼内炎患者护理措施
- 简明职场技能教程与培训规划
- 钢筋混凝土采购合同
- 旅游产品推广合作框架性协议
- 温州十级无尘车间施工方案
- 古诗词中的故事读后感
- 汽车租赁自驾游保险免责协议
- 小熊不刷牙征文
- GB∕T 9286-2021 色漆和清漆 划格试验
- DB33T 1233-2021 基坑工程地下连续墙技术规程
- 天津 建设工程委托监理合同(示范文本)
- 广东中小学教师职称评审申报表初稿样表
- 部编一年级语文下册教材分析
- 火炬及火炬气回收系统操作手册
- 北师大七年级数学下册教学工作计划及教学进表
- 菜肴成本核算(课堂PPT)
- 光纤通信原理课件 精品课课件 讲义(全套)
- 第二课堂美术教案
- 化工投料试车方案(一)
评论
0/150
提交评论