




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宝鸡市重点中学数学高二上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.22.已知圆的方程为,则实数m的取值范围是()A. B.C. D.3.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.4.已知函数的导数为,且满足,则()A. B.C. D.5.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.7.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元8.已知,,则的最小值为()A. B.C. D.9.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.10.直线的倾斜角为()A. B.C. D.11.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.412.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________14.设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,则的最大值为_____15.狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.16.已知数列满足,则其通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.18.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积19.(12分)进入11月份,大学强基计划开始报名,某“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图2所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值和中位数;(每组数据用该组的区间中点值表示)(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加强基计划考试,若已知6名同学中有4名理科生,2名文科生,试求这3人中含文科生的概率.20.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围21.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.22.(10分)已知抛物线的焦点为F,倾斜角为45°的直线m过点F,若此抛物线上存在3个不同的点到m的距离为,求此抛物线的准线方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B2、C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【点睛】关键点点睛:掌握方程表示圆的条件是解题关键.3、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.4、C【解析】首先求出,再令即可求解.【详解】由,则,令,则,所以.故选:C【点睛】本题主要考查了基本初等函数的导数以及导数的基本运算法则,属于基础题.5、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D6、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A7、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解8、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.9、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.10、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.11、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A12、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:214、4【解析】设,写出、的坐标,利用向量数量积的坐标表示有,根据椭圆的有界性即可求的最大值.【详解】由题意知:,,若,∴,,∴,而,则,而,∴当时,.故答案为:【点睛】关键点点睛:利用向量数量积的坐标表示及椭圆的有界性求最值.15、1【解析】由“狄利克雷函数”解析式,先求出,再根据指数函数的解析式求即可.【详解】由题设,,则.故答案:116、【解析】利用累加法即可求出数列的通项公式.【详解】因为,所以,所以,,,…,,把以上个式子相加,得,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半径,∴圆的方程为;【小问2详解】由(1)可知圆的圆心,半径为.设为中点,则,,则.当的斜率不存在时,的方程为,此时,符合题意;当的斜率存在时,设的方程为,即kx-y+2=0,则,解得,故直线的方程为,即.综上,直线的方程为或.18、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,,过的直线的方程为,与抛物线的方程联立,可得,设,的横坐标分别为,,可得,,由抛物线的定义可得,解得,即直线的方程为,可得到直线的距离为,,所以的面积为19、(1)平均值为74.6分,中位数为75分;(2).【解析】(1)利用频率分布直方图平均数和中位数算法直接计算即可;(2)将学生编号,用枚举法求解即可.【小问1详解】依题意可知:∴综合素质成绩的平均值为74.6分.由图易知∵分数在50~60、60~70、70~80的频率分别为0.12、0.18、0.40,∴中位数在70~80之间,设为,则,解得,∴综合素质成绩的中位数为75分.【小问2详解】设这6名同学分别为,,,,1,2,其中设1,2为文科生,从6人中选出3人,所有的可能的结果为,,,,,,,,,,,,,,,,,,,,共20种,其中含有文科学生的有,,,,,,,,,,,,,,,,共16种,∴含文科生的概率为.20、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.21、(1);(2)存在,.【解析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医保政策培训课件
- C语言课程设计课堂汇报
- 2025年幼儿园教研组长工作方案
- 2025年教研工作方案
- 伺服系统与工业机器人课件第8章 工业机器人概论
- 2025年新的工作方案
- 化学行业面试自我介绍
- 个人工作方案2025年共享
- 2024年份1月份超临界发泡聚丙烯鞋材独家供应条款
- 精神科重点病人管理
- 共聚焦显微镜zeisslsm700使用说明-中文版lsm
- DB4451-T 1-2021《地理标志产品+凤凰单丛(枞)茶》-(高清现行)
- 蓝牙耳机课件
- 路基施工安全培训课件
- 健康体检重要异常结果管理专家共识2019
- 35kV输电线路工程旋挖钻孔专项施工方案
- 三年级中华优秀传统文化教案
- (新教材)湘科版三年级下册科学 1.2能溶解多少 教学课件
- PICC专科护士进修学习汇报
- 油气储存企业安全风险智能化管控平台建设指南20220214
- 社会文化因素与健康课件
评论
0/150
提交评论