![2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view14/M00/3E/1A/wKhkGWcmc86AJFmAAAIrD8qLkkw287.jpg)
![2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view14/M00/3E/1A/wKhkGWcmc86AJFmAAAIrD8qLkkw2872.jpg)
![2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view14/M00/3E/1A/wKhkGWcmc86AJFmAAAIrD8qLkkw2873.jpg)
![2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view14/M00/3E/1A/wKhkGWcmc86AJFmAAAIrD8qLkkw2874.jpg)
![2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view14/M00/3E/1A/wKhkGWcmc86AJFmAAAIrD8qLkkw2875.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁夏石嘴山三中高二数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,Q是圆上的动点,则线段长的最小值为()A.3 B.4C.5 D.62.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要4.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为5.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.6.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.7.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-28.在中,角A,B,C所对的边分别为a,b,c,已知,则的面积为()A. B.C. D.9.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.10.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.11.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A. B.C D.12.已知函数的定义域为,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______14.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______15.曲线在点处的切线方程为_______.16.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和18.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.19.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程20.(12分)已知的内角A,B,C的对边分别为a,b,c.(1)若,,,求边长c;(2),,,求角C.21.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.22.(10分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据圆的几何性质转化为圆心与点的距离加上半径即可得解.【详解】圆的圆心为,半径为,所以,圆上点在线段上时,,故选:A2、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A3、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B4、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力5、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B6、C【解析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.7、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示8、A【解析】由余弦定理计算求得角,根据三角形面积公式计算即可得出结果.【详解】由余弦定理得,,∴,∴,故选:A9、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.10、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C11、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线的距离为,所以面积的最小值为,最大值为.故选:A12、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.14、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.15、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.16、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由18、(1)(2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,故公共弦的弦长为:.19、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或20、(1)(2)或【解析】(1)根据余弦定理可求得答案;(2)根据正弦定理和三角形的内角和可求得答案.【小问1详解】解:由余弦定理得:,所以.【小问2详解】解:由正弦定理得:得,所以或120°,又因为,所以,所以或即或.21、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单调递减,所以,符合题意.若,所以在上单调递减,,符合题意.若,当时,,当时,,所以在上单调递减,在上单调递增,所以,不合题意.综上可知,a的取值范围为.【点睛】关键点点睛:本题考查了不等式恒成立问题,其关键是构造函数,通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度航空内饰软装设计及航空用品供应协议3篇
- 冬奥会申请书
- 早晚自习申请书
- 父母引导下的习惯养成之旅
- 2025年度液压设备租赁与售后服务合同
- 二零二五版UPS电源设备购销合同及品牌授权协议3篇
- 环保科技在中小学教育的广泛应用
- 2025年度智慧交通管理系统建设合同范本
- 大棚建设申请书
- 经济适用房书面申请书
- (更新版)HCIA安全H12-711笔试考试题库导出版-下(判断、填空、简答题)
- 糖尿病运动指导课件
- 蛋白表达及纯化课件
- 完整版金属学与热处理课件
- T∕CSTM 00640-2022 烤炉用耐高温粉末涂料
- 304不锈钢管材质证明书
- 民用机场不停航施工安全管理措施
- 港口集装箱物流系统建模与仿真技术研究-教学平台课件
- 新教科版2022年五年级科学下册第2单元《船的研究》全部PPT课件(共7节)
- QTD01钢质焊接气瓶检验工艺指导书
- 人教版七年级英语下册全册英语单词默写直接打印
评论
0/150
提交评论