版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省东方市八所中学2025届数学高二上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.2.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为3.数列中,满足,,设,则()A. B.C. D.4.设,若直线与直线平行,则的值为()A. B.C.或 D.5.已知等比数列,且,则()A.16 B.32C.24 D.646.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于7.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或118.设等比数列的前项和为,若,则()A. B.C. D.9.定义在R上的函数与函数在上具有相同的单调性,则k的取值范围是()A. B.C. D.10.设直线的倾斜角为,且,则满足A. B.C. D.11.内角A,B,C的对边分别为a,b,c.若,则一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形12.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题二、填空题:本题共4小题,每小题5分,共20分。13.函数在上的最大值为______________14.某校开展“读书月”朗诵比赛,9位评委为选手A给出的分数如右边茎叶图所示.记分员在去掉一个最高分和一个最低分后算得平均分为91,复核员在复核时发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是___________.选手A87899924x1515.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.16.直线l:y=-x+m与曲线有两个公共点,则实数m的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.18.(12分)设函数(Ⅰ)求的单调区间;(Ⅱ)若,为整数,且当时,恒成立,求的最大值.(其中为的导函数.)19.(12分)已知函数.若图象上的点处的切线斜率为(1)求a,b的值;(2)的极值20.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长21.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.22.(10分)在四棱锥中,底面ABCD是矩形,点E是线段PA的中点.(1)求证:平面EBD;(2)若是等边三角形,,平面平面ABCD,求点E到平面PDB的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D2、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.3、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力4、C【解析】根据直线的一般式判断平行的条件进行计算.【详解】时,容易验证两直线不平行,当时,根据两直线平行的条件可知:,解得或.故选:C.5、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A6、D【解析】由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论7、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系8、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.9、B【解析】判定函数单调性,再利用导数结合函数在的单调性列式计算作答.【详解】由函数得:,当且仅当时取“=”,则在R上单调递减,于是得函数在上单调递减,即,,即,而在上单调递减,当时,,则,所以k的取值范围是.故选:B10、D【解析】因为,所以,,,,故选D11、C【解析】利用余弦定理角化边整理可得.【详解】由余弦定理有,整理得,故一定是直角三角形.故选:C12、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值14、4【解析】根据题意分和两种情况讨论,再根据平均分公式计算即可得出答案.【详解】解:当时,则去掉的最低分数为87分,最高分数为95分,则,所以,当时,则去掉的最低分数为87分,最高分数为分,则平均分为,与题意矛盾,综上.故答案为:4.15、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.16、【解析】曲线表示圆的右半圆,结合的几何意义,得出实数m的取值范围.【详解】曲线表示圆的右半圆,当直线与相切时,,即,由表示直线的截距,因为直线l与曲线有两个公共点,由图可知,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.18、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)的定义域为,,分和两种情况解不等式和即可得单调递增区间和单调递减区间;(Ⅱ)由题意可得对于恒成立,分离可得,令,只需,利用导数求最小值即可求解.【详解】(Ⅰ)函数的定义域为,当时,对于恒成立,此时函数在上单调递增;当时,由可得;由可得;此时在上单调递减,在上单调递增;综上所述:当时,函数的单调递增区间为,当时,单调递减区间为,单调递增区间为,(Ⅱ)若,由可得,因为,所以,所以所以对于恒成立,令,则,,令,则对于恒成立,所以在单调递增,因为,,所以在上存在唯一零点,即,可得:,当时,,则,当时,,则,所以在上单调递减,在上单调递增,所以,因为,所以的最大值为.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数的定义域;求导函数,由(或)解出相应的的范围,对应的区间为的增区间(或减区间);(2)确定函数的定义域;求导函数,解方程,利用的根将函数的定义域分为若干个子区间,在这些子区间上讨论的正负,由符号确定在子区间上的单调性.19、(1)(2)极大值为,极小值为【解析】(1)求出函数的导函数,再根据图象上的点处的切线斜率为,列出方程组,解之即可得解;(2)求出函数的导函数,根据导函数的符号求得函数的单调区间,再根据极值的定义即可得解.【小问1详解】解:,,;【小问2详解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的极大值为,极小值为.20、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法.21、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024芒果种植基地无人机喷洒农药服务合同3篇
- 仪器设备采购合同5篇
- 经济法关于大学生就业维权方面
- 赞助合同模板(5篇)
- 山东特殊教育职业学院《医学基本技能》2023-2024学年第一学期期末试卷
- 2025年度政府投资项目财务监管代理合同3篇
- 钟山职业技术学院《商务英语视听说(4)》2023-2024学年第一学期期末试卷
- 2024年矿山石料直供采购协议纲要版B版
- 2025年度新疆棉花采摘机械化作业合同范本3篇
- 南京师范大学泰州学院《口腔临床医学概论(口腔修复学)》2023-2024学年第一学期期末试卷
- 医院药品质量管理
- 装饰图案智慧树知到答案2024年齐鲁工业大学
- 汉语言文学本科自考真题1301-全国-古代汉语
- 中医药健康管理服务流程
- 医院开展反恐防恐知识培训
- MDCG 2020-3 Rev.1 欧盟更新医疗器械重大变更指南文件
- 五年级口算每页100题(打印版)
- 人教版小学数学一年级上册20以内口算天天练试题全套
- 广西钦州市浦北县2023-2024学年七年级上学期期末语文试题
- 技术服务补充协议范本
- 内河避碰条例题库
评论
0/150
提交评论