版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届内蒙古省北京八中乌兰察布分校高二数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,已知的顶点,,其内切圆圆心在直线上,则顶点C的轨迹方程为()A. B.C. D.2.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.3.一质点的运动方程为(位移单位:m,时间单位:s),则该质点在时的瞬时速度为()A.4 B.12C.15 D.214.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④5.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.6.已知实数,满足不等式组,则的最小值为()A2 B.3C.4 D.57.在正项等比数列中,,,则()A27 B.64C.81 D.2568.已知平面,的法向量分别为,,则()A. B.C.,相交但不垂直 D.,的位置关系不确定9.已知直线与直线,若,则()A.6 B.C.2 D.10.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.11.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第19行从左往右数第5个数是()A.381 B.361C.329 D.40012.已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“x≥1,x2-2x+4≥0”的否定为____________.14.已知,,,若,则______.15.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.16.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值18.(12分)已知抛物线上的点到其焦点F的距离为5.(1)求C的方程;(2)过点的直线l交C于A,B两点,且N为线段的中点,求直线l的方程.19.(12分)已知数列中,数列的前n项和为满足.(1)证明:数列为等比数列;(2)在和中插入k个数构成一个新数列:,2,,4,6,,8,10,12,,…,其中插入的所有数依次构成首项和公差都为2的等差数列.求数列的前50项和.20.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围21.(12分)过原点O的圆C,与x轴相交于点A(4,0),与y轴相交于点B(0,2)(1)求圆C的标准方程;(2)直线l过B点与圆C相切,求直线l的方程,并化为一般式22.(10分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.请判断是否为定值,若是,求出该定值;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据图可得:为定值,利用根据双曲线定义,所求轨迹是以、为焦点,实轴长为6的双曲线的右支,从而写出其方程即得【详解】解:如图设与圆切点分别为、、,则有,,,所以根据双曲线定义,所求轨迹是以、为焦点,实轴长为4的双曲线的右支(右顶点除外),即、,又,所以,所以方程为故选:A2、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.3、B【解析】由瞬时变化率的定义,代入公式求解计算.【详解】由题意,该质点在时的瞬时速度为.故选:B4、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B5、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A6、B【解析】画出可行域,找到最优解,得最值.【详解】画出不等式组对应的可行域如下:平行移动直线,当直线过点时,.故选:B.7、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.8、C【解析】利用向量法判断平面与平面的位置关系.【详解】因为平面,的法向量分别为,,所以,即不垂直,则,不垂直,因为,即即不平行,则,不平行,所以,相交但不垂直,故选:C9、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A10、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A11、C【解析】观察规律可知,从第一行起,每一行最后一个数是连续的完全平方数,据此容易得出答案.【详解】由图中数字排列规律可知:第1行从左往右最后1个数是,第2行从左往右最后1个数是,第3行从左往右最后1个数是,……第18行从左往右最后1个数为,第19行从左往右第5个数是故选:C.12、D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅当,即,时等号成立,此时故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据还有一个量词的命题的否定的方法解答即可.【详解】命题“x≥1,x2-2x+4≥0”的否定为“”.故答案为:.14、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.15、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.16、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由图示知二面角为锐角,所以二面角的正弦值为18、(1)(2)【解析】(1)根据抛物线的定义可得,求得,即可得出答案;(2)设,利用点差法求出直线l的斜率,再利用直线的点斜式方程即可得出答案.【小问1详解】解:由抛物线定义可知:,解得:,∴C的方程为;【小问2详解】解:设,则,两式作差得,∴直线l的斜率,∵为的中点,∴,∴,∴直线l的方程为,即(经检验,所求直线符合条件).19、(1)证明见解析;(2)2735.【解析】(1)利用给定的递推公式结合“当时,”计算推理作答.(2)插入所有项构成数列,,再确定数列的前50项中含有数列和的项数计算作答.【小问1详解】依题意,,当时,,两式相减得:,则有,而,即,所以数列是以2为首项,2为公式的等比数列.【小问2详解】由(1)知,,即,插入的所有项构成数列,,数列中前插入数列的项数为:,而前插入数列的项数为45,因此,数列的前50项中包含数列前9项,数列前41项,所以.20、(1),;(2).【解析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是21、(1);(2)【解析】(1)设圆的标准方程为:,则分别代入原点和,得到方程组,解出即可得到;(2)由(1)得到圆心为,半径,由于直线过点与圆相切,则分别讨论斜率存在与否,运用直线与圆相切的条件:,解方程即可得到所求直线方程.【详解】(1)设圆C的标准方程为,则分别代入原点和,得到,解得则圆的标准方程为(2)由(1)得到圆心为,半径,由于直线过点与圆相切,当时,到的距离为2,不合题意,舍去;当斜率存在时,设,由直线与圆相切,得到,即有,解得,故直线,即为点睛:本题考查直线与圆位置关系,考查圆的方程的求法和直线与圆相切的条件,考查运算能力,属于中档题;圆的方程有一般形式与标准形式,在该题中利用待定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度网络安全应急响应托管服务合同2篇
- 二零二五年度绿色建筑评价标识工程联营协议3篇
- 二零二五年度大货车司机职业风险防范合同范本3篇
- 网络安全文化传播与防范意识强化研究
- 2025版实训基地学生实习就业安全保障合同2篇
- 小学教育中的数学创新思维培养
- 清远广东清远阳山县纪委监委招聘政府购买服务人员笔试历年参考题库附带答案详解
- 杭州浙江杭州市湖墅学校编外教师招聘笔试历年参考题库附带答案详解
- 二零二五年度智能家具制造承包合作协议3篇
- 2025年牛津译林版选择性必修1地理下册月考试卷
- 幼儿平衡车训练课程设计
- 肩袖损伤的护理查房课件
- 2023届北京市顺义区高三二模数学试卷
- 公司差旅费报销单
- 我国全科医生培训模式
- 2021年上海市杨浦区初三一模语文试卷及参考答案(精校word打印版)
- 八年级上册英语完形填空、阅读理解100题含参考答案
- 八年级物理下册功率课件
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 《长津湖》电影赏析PPT
- 销售礼仪培训PPT
评论
0/150
提交评论