2025届广西贵港市港南中学三文科班高二上数学期末检测试题含解析_第1页
2025届广西贵港市港南中学三文科班高二上数学期末检测试题含解析_第2页
2025届广西贵港市港南中学三文科班高二上数学期末检测试题含解析_第3页
2025届广西贵港市港南中学三文科班高二上数学期末检测试题含解析_第4页
2025届广西贵港市港南中学三文科班高二上数学期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广西贵港市港南中学三文科班高二上数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生2.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为()A.尺 B.尺C.尺 D.尺3.已知等差数列满足,则等于()A. B.C. D.4.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.5.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.已知随机变量服从正态分布,,则()A. B.C. D.7.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.28.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上9.两条平行直线与之间的距离为()A. B.C. D.10.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④11.积分()A. B.C. D.12.下列椭圆中,焦点坐标是的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______14.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____15.某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人16.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.18.(12分)已知等差数列中,,前5项的和为,数列满足,(1)求数列,的通项公式;(2)记,求数列的前n项和19.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值20.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.21.(12分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.22.(10分)如图,是平行四边形,已知,,平面平面.(1)证明:;(2)若,求平面与平面所成二面角的平面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.2、D【解析】根据题意转化为等差数列,求首项.【详解】设冬至的日影长为,雨水的日影长为,根据等差数列的性质可知,芒种的日影长为,,解得:,,所以冬至的日影长为尺.故选:D3、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.4、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D5、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C6、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题7、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.8、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.9、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算10、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B11、B【解析】根据定积分的几何意义求值即可.【详解】由题设,定积分表示圆在x轴的上半部分,所以.故选:B12、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:14、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.15、150【解析】根据考试的成绩X服从正态分布.得到考试的成绩X的正太密度曲线关于对称,根据,得到,根据频率乘以样本容量得到这个分数段上的人数【详解】由题意,考试的成绩X服从正态分布考试的成绩X的正太密度曲线关于对称,,,,该市成绩在140分以上的人数为故答案为:15016、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)结合已知条件可得到点P在线段QF的垂直平分线上,然后利用椭圆定义即可求解;(2)结合已知条件设出直线的方程,然后联立椭圆方程,利用弦长公式求出,再设出直线NH的方程,求出N点坐标,进而求出,然后表示出,再利用换元法和均值不等式求解即可.【小问1详解】设点的坐标为,∵,∴点P在线段QF垂直平分线上,∴,又∵,∴∴点P在以C,F为焦点的椭圆上,且,∴,∴曲线的方程为:.【小问2详解】设直线AB方程为,,由,解得,,解得,由韦达定理可知,,,∴∵AB与HN垂直,∴直线NH的方程为,令,得,∴,又由,∴,∴设则∴当且仅当即时等号成立,有最大值,此时满足,故,所以直线AB的方程为:,即或.18、(1),;(2).【解析】(1)利用等差数列求和公式可得,进而可得,再利用累加法可求,即得;(2)由题可得,然后利用分组求和法即得.【小问1详解】设公差为d,由题设可得,解得,所以;当时,,∴,当时,(满足上述的),所以【小问2详解】∵当时,当时,综上所述:19、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即,又因为c=2,所以,又因为椭圆的中心在原点,焦点在x轴上,所以该椭圆的标准方程为.【小问2详解】解:因为,所以,即,又,所以,即.20、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.21、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐标,则,再利用基本不等式求出取值范围;【详解】解:(1)由题意得:,,又,联立以上可得:,,,椭圆C的方程为.(2)由(1)得,当直线轴时,又,联立得,解得或,所以,此时,直线的斜率为0.当直线l不垂直于x轴时,设,,直线l:(,),联立,整理得,依题意,即(*)且,.又,,,即,且t满足(*),,,故直线的斜率,当时,,当且仅当,即时取等号,此时;当时,,当且仅当,即时取等号,此时;综上,直线的斜率的取值范围为.【点睛】本题考查利用待定系数法求椭圆方程,直线与椭圆的综合应用,属于难题.22、(1)见解析;(2).【解析】(1)推导出,取BC的中点F,连结EF,可推出,从而平面,进而,由此得到平面,从而;(2)以为坐标原点,,所在直线分别为,轴,以过点且与平行的直线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成二面角的余弦值【详解】(1)∵是平行四边形,且∴,故,即取BC的中点F,连结EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论