版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌县域高中协同发展共同体2025届数学高二上期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.2.“”是“直线与直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.54.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.5.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.6.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.7.甲、乙两名同学8次考试的成绩统计如图所示,记甲、乙两人成绩的平均数分别为,,标准差分别为,,则()A.>,< B.>,>C.<,< D.<,>8.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件9.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()10.已知向量与平行,则()A. B.C. D.11.双曲线的虚轴长为()A. B.C.3 D.612.已知正实数a,b满足,若不等式对任意的实数x恒成立,则实数m的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数在区间上的平均变化率为___________.14.已知抛物线的准线方程为,在抛物线C上存在A、B两点关于直线对称,设弦AB的中点为M,O为坐标原点,则的值为___________.15.已知曲线与曲线有相同的切线,则________16.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.02418.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值19.(12分)已知函数(1)若在点处的切线与轴平行,求的值;(2)当时,求证:;(3)若函数有两个零点,求的取值范围20.(12分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求21.(12分)已知函数(1)求单调增区间;(2)当时,恒成立,求实数的取值范围.22.(10分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.2、A【解析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断.【详解】由,得,即或所以,反之,则不然所以“”是“直线与直线垂直”的充分不必要条件.故选:A3、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C4、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.5、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D6、D【解析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.7、A【解析】根据折线统计图,结合均值、方差的实际含义判断、及、的大小.【详解】由统计图知:甲总成绩比乙总成绩要高,则>,又甲成绩的分布比乙均匀,故<.故选:A.8、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D9、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.10、D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.11、D【解析】根据题意,由双曲线的方程求出的值,即可得答案【详解】因为,所以,所以双曲线的虚轴长为.故选:D.12、D【解析】利用基本不等式求出的最小值16,分离参数即可.【详解】因为,,,所以,当且仅当,即,时取等号由题意,得,即对任意的实数x恒成立,又,所以,即故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:314、5【解析】先运用点差法得到,然后通过两点距离公式求出结果详解】解:抛物线的准线方程为,所以,解得,所以抛物线的方程为,设点,,,,的中点为,,则,,两式相减得,即,又因为,两点关于直线对称,所以,解得,可得,则,故答案为:515、0【解析】设切点分别为,.利用导数的几何意义可得,则.由,,计算可得,进而求得点坐标代入方程即可求得结果.【详解】设切点分别为,由题意可得,则,即因为,,所以,即,解得,所以,则,解得故答案为:016、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析(2)没有【解析】(1)由A队在常规赛60场比赛中的比赛结果记录表可得答案;(2)根据(1)中的列联表,代入可得答案.【小问1详解】(1)根据表格信息得到列联表:A队胜A队负合计主场25530客场201030合计451560【小问2详解】所以没有90%的把握认为比赛的“主客场”与“胜负”之间有关.18、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由图示知二面角为锐角,所以二面角的正弦值为19、(1);(2)证明见解析;(3).【解析】(1)由可求得实数的值;(2)利用导数分析函数的单调性,求得,即可证得结论成立;(3)分析可知在上存在唯一的极值点,且,可得出,构造函数,分析函数的单调性,求得的取值范围,再构造,分析函数的单调性,求出的范围,即可得出的取值范围.【小问1详解】解:因为的定义域为,.由题意可得,解得.【小问2详解】证明:当时,,该函数的定义域为,,令,其中,则,故函数在上递减,因为,,所以,存在,使得,则,且,当时,,函数单调递增,当时,,函数单调递减,所以,,所以,当时,.【小问3详解】解:函数的定义域为,.令,其中,则,所以,函数单调递减,因为函数有两个零点,等价于函数在上存在唯一的极值点,且为极大值点,且,即,所以,,令,其中,则,故函数在上单调递增,又因为,由,可得,构造函数,其中,则,所以,函数在上单调递增,故,因此,实数的取值范围是.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.20、(1)(2)【解析】(1)根据椭圆的简单几何性质即可求出;(2)设,联立与椭圆方程,求出,再根据平行四边形的性质求出点的坐标,然后由点G在椭圆C上,可求出,从而可得【小问1详解】∵椭圆C的右顶点为,∴,∵轴,且,∴,∴,所以椭圆C的标准方程为【小问2详解】设,将直线代入,消去y并整理得,由,得.(*)由根与系数的关系可得,∴,∵四边形为平行四边形,∴,得,将G点坐标代人椭圆C的方程得,满足(*)式∴21、(1)单调增区间为;(2).【解析】(1)求导由求解.(2)将时,恒成立,转化为时,恒成立,令用导数法由求解即可.【详解】(1)因为函数所以令,解得,所以单调增区间为.(2)因为时,恒成立,所以时,恒成立,令则令因为时,恒成立,所以在单调递减.当时,在单调递减,故符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求.综上.【点睛】方法点睛:恒(能)成立问题的解法:若在区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国空心柄餐具数据监测研究报告
- 2025至2030年中国布块拼接用线数据监测研究报告
- 2025年中国风冷螺杆空调机市场调查研究报告
- 2025年中国螺纹烛市场调查研究报告
- 2025年中国水冷却磁粉离合器市场调查研究报告
- 区域协同立法机制研究
- 人才引进政策对企业创新效率的影响研究
- 二零二四年企业债券担保委托保证合同3篇
- 2025年度船员劳务合同范本修订版4篇
- 二零二五年度水库水资源调配与承包管理合同3篇
- 手术室护士的职业暴露及防护措施护理课件
- 人员测评与选拔的主要方法课件
- 2024年内蒙古电力集团招聘笔试参考题库含答案解析
- 阿米巴落地实操方案
- 药物制剂工(三级)理论试题题库及答案
- 高强度间歇训练(HIIT)对代谢健康的长期影响
- ICU患者导管留置登记表
- 中建商务工作指南手册
- 耳鼻咽喉:头颈外科疾病诊断流程与冶疗策略
- 贵州省2023年中考英语真题
- 个人借条电子版模板
评论
0/150
提交评论