版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省许昌市示范初中数学高二上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,B=60°,,,则AC边的长等于()A. B.C. D.2.若关于x的方程有解,则实数a的取值范围为()A. B.C. D.3.设函数,若的整数有且仅有两个,则的取值范围是()A. B.C. D.4.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.5.已知空间向量,则()A. B.C. D.6.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上7.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件8.已知,,则()A. B.C. D.9.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.10.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.11.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.412.已知函数,则的值为()A. B.0C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的体对角线长为___________.14.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.15.椭圆C:的左、右焦点分别为,,点A在椭圆上,,直线交椭圆于点B,,则椭圆的离心率为______16.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员,面向全社会的优质平台,现日益成为老百姓了解国家动态,紧跟时代脉搏的热门APP,某市宣传部门为了解全民利用“学习强国”了解国家动态的情况,从全市抽取2000名人员进行调查,统计他们每周利用“学习强国”的时长,下图是根据调查结果绘制的频率分布直方图(1)根据上图,求所有被抽查人员利用“学习强国”的平均时长和中位数;(2)宣传部为了了解大家利用“学习强国”的具体情况,准备采用分层抽样的方法从和组中抽取50人了解情况,则两组各抽取多少人?再利用分层抽样从抽取的50入中选5人参加一个座谈会,现从参加座谈会的5人中随机抽取两人发言,求小组中至少有1人发言的概率?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点到准线的距离为2.(1)求C的方程:(2)过C上一动点P作圆两条切线,切点分别为A,B,求四边形PAMB面积的最小值.18.(12分)已知关于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集为R,求k的取值范围.19.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值20.(12分)已知抛物线过点,是抛物线的焦点,直线交抛物线于另一点,为坐标原点.(1)求抛物线的方程和焦点的坐标;(2)抛物线的准线上是否存在点使,若存在请求出点坐标,若不存在请说明理由.21.(12分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数22.(10分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理,,得,故选:B.2、C【解析】将方程有解,转化为方程有解求解.【详解】解:因为方程有解,所以方程有解,因为,当且仅当,即时,等号成立,所以实数a的取值范围为,故选:C3、D【解析】等价于,令,,利用导数研究函数的单调性,作出的简图,数形结合只需满足即可.【详解】,即,又,则.令,,,当时,,时,,时,,在单调递减,在单调递增,且,且,,作出函数图象如图所示,若的整数有且仅有两个,即只需满足,即,解得:故选:D4、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.5、A【解析】求得,即可得出.【详解】,,,.故选:A.6、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C7、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.8、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.9、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题10、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B11、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A12、B【解析】求导,代入,求出,进而求出.【详解】,则,即,解得:,故,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】先根据棱锥的体积求出正方体的棱长,进而求出正方体的体对角线长.【详解】如图,连接,设正方体棱长为,则.所以,体对角线.故答案为:.14、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.15、(也可以)【解析】可以利用条件三角形为等腰直角三角形,设出边长,找到边长与之间等量关系,然后把等量关系带入到勾股定理表达的等式中,即可求解离心率.【详解】由题意知三角形为等腰直角三角形,设,则,解得,,在三角形中,由勾股定理得,所以,故答案为:(也可以)16、(1)平均时长为,中位数为(2)在和两组中分别抽取30人和20人,概率【解析】(1)由频率分布直方图计算平均数,中位数的公式即可求解;(2)先根据分层抽样求出每一组抽取的人数,再列举抽取总事件个数,从而利用古典概型概率计算公式即可求解【小问1详解】解:(1)设被抽查人员利用“学习强国”的平均时长为,中位数为,,被抽查人员利用“学习强国”的时长中位数满足,解得,即抽查人员利用“学习强国”的平均时长为6.8,中位数为【小问2详解】解:组的人数为人,设抽取的人数为,组的人数为人,设抽取的人数为,则,解得,,所以在和两组中分别抽取30人和20人,再利用分层抽样从抽取的50入中抽取5人,两组分别抽取3人和2人,将组中被抽取的工作人员标记为,,,将中的标记为,,则抽取的情况如下:,,,,,,,,,,,,,,,,,,,共10种情况,其中在中至少抽取1人有7种,故所求概率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线方程求出交点坐标和准线方程,求出p即可;(2)设,利用两点坐标求距离公式求出,根据四边形PAMB的面积得到关于的二次函数,结合二次函数的性质即可得出结果.【小问1详解】因为C的焦点为,准线为,由题意得,即,因此.【小问2详解】圆M的圆心为,半径为1.由条件可知,,且,于是.设,则.当时等号成立,所以四边形PAMB面积的最小值为.18、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分类讨论后可得的取值范围.【小问1详解】时,原不等式即为,其解为.【小问2详解】不等式的解集为R,当时,则有,解得,综上,.19、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去)当变化时,与变化如下递增递减所以函数在上的最大值为,最小值为.20、(1)抛物线的方程为,焦点坐标为(2)存在,且【解析】(1)根据点坐标求得,进而求得抛物线的方程和焦点的坐标.(2)设,根据列方程,化简求得的坐标.【小问1详解】将代入得,所以抛物线的方程为,焦点坐标为.【小问2详解】存在,理由如下:直线的方程为,或,即.抛物线的准线,设,,即,所以.即存在点使.21、(1)(2)答案见解析【解析】(1)由:存在使来求得的取值范围.(2)利用分离常数法,结合导数来求得零点个数.【小问1详解】,在上递增,由于在上不单调,所以存使,,所以.【小问2详解】,令,当时,,构造函数,,所以在递减;在递增,当时,;当时,;.由此画出大致图象如下图所示,所以,当时,有个零点,当时,没有零点,当时,有个零点.22、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版木门企业市场营销策划与品牌推广合同3篇
- 2025年度个人专利申请委托合同3篇
- 2025年担保合同的法律责任
- 2025年度民宿装修设计与运营管理合同范本
- 2025年互动直播平台软件开发合同
- 2025年主题公园游乐设施服务合同
- 2025版离婚协议书模板下载与婚姻调解服务合同2篇
- 2025年度特色鱼塘承包运营合同范本3篇
- 二零二五年度出口贸易合同融资与风险管理合作协议4篇
- 二零二五年度城市夜景照明强电系统承包合同3篇
- 2025河北邯郸世纪建设投资集团招聘专业技术人才30人高频重点提升(共500题)附带答案详解
- 慈溪高一期末数学试卷
- 天津市武清区2024-2025学年八年级(上)期末物理试卷(含解析)
- 《徐霞客传正版》课件
- 江西硅博化工有限公司年产5000吨硅树脂项目环境影响评价
- 高端民用航空复材智能制造交付中心项目环评资料环境影响
- 贵州省黔东南州2024年七年级上学期数学期末考试试卷【附答案】
- 量子医学成像学行业研究报告
- DB22T 3268-2021 粮食收储企业安全生产标准化评定规范
- 办事居间协议合同范例
- 正念减压疗法详解课件
评论
0/150
提交评论