安徽省安徽师大附中2025届高一上数学期末统考试题含解析_第1页
安徽省安徽师大附中2025届高一上数学期末统考试题含解析_第2页
安徽省安徽师大附中2025届高一上数学期末统考试题含解析_第3页
安徽省安徽师大附中2025届高一上数学期末统考试题含解析_第4页
安徽省安徽师大附中2025届高一上数学期末统考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安徽师大附中2025届高一上数学期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则集合中元素的个数为()A.1 B.2C.3 D.42.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.3.正方体ABCD-A1B1C1D1中,异面直线所成的角等于()A.30° B.45°C.60° D.90°4.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.5.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知幂函数过点则A.,且在上单调递减B.,且在单调递增C.且在上单调递减D.,且在上单调递增7.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}8.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.9.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是10.的零点所在的一个区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.12.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm213.已知函数是定义在上的奇函数,且,则________,________.14.命题,,则为______.15.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.16.幂函数的图象经过点,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记不等式的解集为A,不等式的解集为B.(1)当时,求;(2)若,求实数a的取值范围.18.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.19.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间20.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.(1)求证:MN⊥平面A1BC;(2)求直线BC1和平面A1BC所成的角的大小.21.已知n为正整数,集合Mn=x1,x2,⋅⋅⋅,xnx(1)当n=3时,设α=0,1,0,β=1,0,0,写出α-(2)若集合S满足S⊆M3,且∀α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意,集合是由点作为元素构成的一个点集,根据,即可得到集合的元素.【详解】由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性2、B【解析】,由,得,,时,为,故选B3、C【解析】在正方体中,连接,则,则异面直线和所成的角就是相交直线和所成的角,即,在等边三角形中,,故选C4、B【解析】根据列式求解即可得答案.【详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【点睛】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.5、B【解析】分析】首先根据可得:或,再判断即可得到答案.【详解】由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.6、A【解析】由幂函数过点,求出,从而,在上单调递减【详解】幂函数过点,,解得,,在上单调递减故选A.【点睛】本题考查幂函数解析式的求法,并判断其单调性,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.7、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.8、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积9、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.10、A【解析】根据零点存在性定理分析判断即可【详解】因为在上单调递增,所以函数至多有一个零点,因为,,所以,所以的零点所在的一个区间为,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.12、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.13、①.1②.0【解析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可.【详解】因为满足,且,且其为奇函数,故;又,故可得,又函数是定义在上的奇函数,故,又,故.故答案为:1;0.14、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.15、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:16、2【解析】根据幂函数过点,求出解析式,再有解析式求值即可.【详解】设,则,所以,故,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)分别求出集合,再求并集即可.(2)分别求出集合和的补集,它们的交集不为空集,列出不等式求解.【详解】(1)当时,的解为或(2)a的取值范围为18、(1)(2)【解析】(1)根据两条相邻对称轴之间的距离可求得函数的周期,进而求得,根据平移之后函数图象关于轴对称,可得值,从而可得函数解析式;(2)将所求角用已知角来表示即可求得结果【小问1详解】由题意可知,,即,所以,,将的图象向右平移个单位得,因为的图象关于轴对称,所以,,所以,,因为,所以,所以;【小问2详解】,所以,,,所以19、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.20、(1)见解析;(2)【解析】(1)易得BC⊥平面ACC1A1,连接AC1,则BC⊥AC1.侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,根据线面垂直判定定理可知AC1⊥平面A1BC,因为侧面ABB1A1是正方形,MN是△AB1C1的中位线,所以MN∥AC1,从而MN⊥平面A1BC;(2)根据AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,根据线面所成角的定义可知∠C1BD为直线BC1和平面A1BC所成角,设AC=BC=CC1=a,求出C1D,BC1,在Rt△BDC1中,求出∠C1BD,即可求出所求.试题解析:(1)证明如图,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.又侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.(2)如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,则∠C1BD为直线BC1和平面A1BC所成的角.设AC=BC=CC1=a,则C1D=a,BC1=a在Rt△BDC1中,sin∠C1BD==,所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°21、(1)α-β=1,1,0(2)最大值是4,此时S=0,0,0,(3)2【解析】(1)根据定义直接求解即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论