




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市宝山区高境一中数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,,,则()A. B.C. D.2.已知是关于x的一元二次不等式的解集,则的最小值为()A. B.C. D.3.直线的倾斜角A. B.C. D.4.下列函数中,在上单调递增的是()A. B.C. D.5.有一组实验数据如下表所示:1.93.04.0516.11.54.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A. B.C. D.6.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.7.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.8.()A B.C. D.9.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或410.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知为的外心,,,,且;当时,______;当时,_______.12.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.13.已知角的终边过点,求_________________.14.方程的解为__________15.若函数的定义域为R,则实数m的取值范围是______16.已知(其中且为常数)有两个零点,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值18.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.19.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,求:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时候后,学生才能回到教室.21.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B2、C【解析】由题知,,,则可得,则,利用基本不等式“1”的妙用来求出最小值.【详解】由题知是关于x的一元二次方程的两个不同的实数根,则有,,,所以,且是两个不同的正数,则有,当且仅当时,等号成立,故的最小值是.故选:C3、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.4、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.5、B【解析】先画出实验数据的散点图,结合各选项中的函数特征可得的选项.【详解】实验数据的散点图如图所示:4个选项中的函数,只有B符合,故选:B.6、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.7、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误8、A【解析】由根据诱导公式可得答案.【详解】故选:A9、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.10、B【解析】由图可知,故,选.二、填空题:本大题共6小题,每小题5分,共30分。11、(1).(2).【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.12、【解析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【点睛】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角13、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.14、【解析】令,则解得:或即,∴故答案为15、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:16、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)根据立方差公式可知,要计算及的值就可以求解问题;(2)将方程转化为,再分类讨论即可求解.【小问1详解】,即,则,即,所以因为x是第四像限角,所以,所以,所以【小问2详解】由,可得,则方程可化为,①当时,,显然方程无解;②当时,方程等价于又(当且仅当时取“=”),所以要使得关于x的方程有实数根,则.故a的最小值是118、(1);(2).【解析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.19、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令,则,所以,故,即的取值范围为.20、(1),(2)【解析】分析】(1)利用函数图像,借助于待定系数法,求出函数解析式,(2)结合图像可知由药物释放完毕后的函数解析式中的可求得结果【详解】(1)由图可知直线的斜率为,所以图像中线段的方程为,因为点在曲线上,所以,解得,所以从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为,(2)因为药物释放过程中室内药量一直在增加,即使药量小于0.25毫克,学生也不能进入教室,所以只能当药物释放完毕,室内药量减少到0.25毫克以下时,学生方可进入教室,即,解得,所以从药物释放开始,至少需要经过小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人借款担保人合同
- 电子商务网络推广合作免责协议
- 夫妻房屋财产约定协议书
- 商铺招商代理合同
- 三农村基层民主监督与管理制度化方案
- 电子签名认证技术研究开发合作协议
- 工业地产租赁合同
- 油漆工种劳务分包合同
- 小学禁毒宣传活动方案
- 楼梯口拆除改造合同
- 08SG510-1 轻型屋面平行弦屋架(圆钢管、方钢管)
- 事前绩效评估具体工作实施方案
- 六年级下册语文第一单元测试卷 部编版(含答案)
- 2024年湖南高速铁路职业技术学院单招职业适应性测试题库新版
- 《研学旅行市场营销》课件-研学旅行市场营销之社群营销
- 医学人体美学的测量和评估
- 艰难梭菌感染动物模型的建立及其应用评价
- FZT 51006-2012 膜级聚己内酰胺切片
- 《旅游景点云南》课件2
- 《斯特鲁普效应》课件
- 第6章 30年代文学思潮
评论
0/150
提交评论