版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省东安县天成实验学校高一数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的图像大致是()A. B.C. D.2.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. B.C. D.3.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数4.已知,,,则的大小关系是()A. B.C. D.5.下列各式化简后的结果为cosxA.sinx+πC.sinx-π6.若,则关于的不等式的解集是()A. B.或C.或 D.7.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.188.已知函数,的图象如图,若,,且,则()A.0 B.1C. D.9.在下列函数中,最小值为2的是()A.(且) B.C. D.10.已知集合0,,1,,则A. B.1,C.0,1, D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足:对任意实数,有且,当时,,则时,________12.已知(其中且为常数)有两个零点,则实数的取值范围是___________.13.已知,,则的最小值是___________.14.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.15.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.16.已知向量的夹角为,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.,,且,,且为偶函数(1)求;(2)求满足,的的集合18.求满足以下条件的m值.(1)已知直线2mx+y+6=0与直线(m-3)x-y+7=0平行;(2)已知直线mx+(1-m)y=3与直线(m-1)x+(2m+3)y=2互相垂直.19.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合20.已知四棱锥,其中面为的中点.(1)求证:面;(2)求证:面面;(3)求四棱锥的体积.21.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C2、B【解析】因为线段的垂直平分线上的点到点,的距离相等,所以即:,化简得:故选3、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.4、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A5、A【解析】利用诱导公式化简每一个选项即得解.【详解】解:A.sinx+B.sin2π+xC.sinx-D.sin2π-x故选:A6、D【解析】判断出,再利用一元二次不等式的解法即可求解.【详解】因,所以,即.所以,解得.故选:D【点睛】本题考查了一元二次不等式的解法,考查了基本运算求解能力,属于简单题.7、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C8、A【解析】根据图象求得函数解析式,再由,,且,得到的图象关于对称求解.【详解】由图象知:,则,,所以,因在函数图象上,所以,则,解得,因为,则,所以,因为,,且,所以的图象关于对称,所以,故选:A9、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.10、A【解析】直接利用交集的运算法则化简求解即可【详解】集合,,则,故选A【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.12、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.13、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.14、【解析】由题知,进而根据计算即可.【详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:15、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.16、【解析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)首先利用向量数量积的坐标运算并且结合二倍角公式与两角和的正弦公式化简函数的解析式,可得:.由已知为偶函数知其图象关于y轴对称,可得:当x=0成立,从而可得,再根据θ的范围即可得到答案(2)由(1)可得:,再结合余弦函数的图象及性质可得:,进而结合x的取值范围得到结果试题解析:(1)由题意可得:所以函数解析式为:;因为为偶函数,所以有:即:又因为,所以(2)由(1)可得:,因为,所以由余弦函数的图象及性质得:,又因为,所以x的集合为考点:1.两角和与差的正余弦公式、二倍角公式;2.向量数量积的坐标运算;3.三角函数的性质18、(1)(2)或【解析】(1)平行即两直线的斜率相等,建立等式,即可得出答案.(2)直线垂直即两直线斜率之积为-1,建立等式,即可得出答案.【详解】解:(1)当m=0或m=3时,两直线不平行当m0且m3时,若两直线平行,则(2)当m=0或m=时,两直线不垂直当m=1时,两直线互相垂直当m0,1,时,若两直线垂直,则或也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.【点睛】本道题目考查了直线平行或垂直的判定条件,注意,当x,y的系数含有参数的时候,要考虑系数是否为0.19、(1),或或;(2)【解析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【详解】(1),则或,,或或;(2),,,解得:,则实数的取值范围构成的集合为.20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥的体积.试题解析:(1)证明:取中点,连接分别是的中点,,且与平行且相等,为平行四边形,,又面面面.(2)证明:为等边三角形,,又面面垂直于面的两条相交直线面面面面面.(3)连接,该四棱锥分为两个三棱锥和.21、(1),(2)13分钟【解析】(1)按照题目所给定的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度环保工程咨询合同
- 采矿钻头市场需求与消费特点分析
- 2024年度专利实施许可合同的技术支持与维护义务
- 2024年度北京房产保险合同
- 2024常州个人二手房过户税务咨询服务合同
- 水果抛光剂市场发展现状调查及供需格局分析预测报告
- 运载工具用窗玻璃半成品市场发展现状调查及供需格局分析预测报告
- 眼影盘市场发展现状调查及供需格局分析预测报告
- 电流转换器市场发展现状调查及供需格局分析预测报告
- 2024年度某汽车公司与4S店之间的汽车销售合同
- 技工学校教师的上课技巧课件
- 消防队消防员劳动合同
- 合伙成立运输公司责任协议书
- 护理三基三严模拟考试题(附答案)
- 2024双方自愿离婚协议书样本
- 《基本政治制度》名师教案
- 2024年网格员考试题库1套
- 【基于EVA的企业财务绩效评价探究-以维维集团为例16000字(论文)】
- 江苏高职单招报考指南
- GJB9001C质量保证大纲
- 专利权无偿转让合同模板
评论
0/150
提交评论