2025届北京市育英学校高一数学第一学期期末联考模拟试题含解析_第1页
2025届北京市育英学校高一数学第一学期期末联考模拟试题含解析_第2页
2025届北京市育英学校高一数学第一学期期末联考模拟试题含解析_第3页
2025届北京市育英学校高一数学第一学期期末联考模拟试题含解析_第4页
2025届北京市育英学校高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市育英学校高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.2.函数的图象是()A. B.C. D.3.函数()的零点所在的一个区间是()A. B.C. D.4.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.25.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.246.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点7.已知集合,若,则()A.-1 B.0C.2 D.38.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,9.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是()A. B.C. D.10.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于的方程在有解,则的取值范围是________12.已知若,则().13.已知函数fx=2-ax,x≤1,ax-1,x>1①存在实数a,使得fx②对任意实数a(a>0且a≠1),fx都不是R③存在实数a,使得fx的值域为R④若a>3,则存在x0∈0,+其中所有正确结论的序号是___________.14.函数f(x)=2x+x-7的零点在区间(n,n+1)内,则整数n的值为______15.已知函数在区间上恰有个最大值,则的取值范围是_____16.直线关于定点对称的直线方程是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围18.已知,(1)分别求,的值;(2)若角终边上一点,求的值19.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点()求四棱锥的体积()求证:平面平面()在线段上确定一点,使平面,并给出证明20.已知圆和定点,由圆外一动点向圆引切线,切点为,且满足.(1)求证:动点在定直线上;(2)求线段长的最小值并写出此时点的坐标.21.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【点睛】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题2、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C3、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C4、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图6、D【解析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【点睛】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力7、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C8、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.9、A【解析】纵轴表示离家的距离,所以在出发时间为可知C,D错误,再由刚开始时速度较快,后面速度较慢,可根据直线的倾斜程度得到答案.【详解】当时间时,,故排除C,D;由于刚开始时速度较快,后面速度较慢,所以前段时间的直线的倾斜角更大.故选:A.【点睛】本题考查根据实际问题抽象出对应问题的函数图象,考查抽象概括能力,属于容易题.10、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:12、【解析】利用平面向量平行的坐标表示进行求解.【详解】因为,所以,即;故答案:.【点睛】本题主要考查平面向量平行的坐标表示,两向量平行坐标分量对应成比例,侧重考查数学运算的核心素养.13、①②④【解析】通过举反例判断①.,利用分段函数的单调性判断②③,求出y=2-ax关于y轴的对称函数为y=a-2x,利用y=a-2x与【详解】当a=2时,fx=0,x≤1,2x-1,x>1当x>1时,若fx是R上的减函数,则2-a<00<a<12-a≥当0<a<1时,y=ax-1单减,且当x>1时,值域为0,1,而此时y=2-ax单增,最大值为2-a,所以函数当1<a<2时,y=2-ax单增,y=ax-1单增,若fx的值域为R,则2-a≥a1-1=1,所以a≤1,与由①可知,当a=2时,函数fx值域不为R;当a>2时,y=2-ax单减,最小值为2-a,y=ax-1单增,且ax-1>1又y=2-ax关于y轴的对称函数为y=a-2x,若a>3,则a-2>1=a1-1=1,但指数函数y=ax-1的增长速度快于函数y=a-2故答案为:①②④14、2【解析】因为函数f(x)的图象是连续不断的一条曲线,又f(0)=20+0-7=-6<0,f(1)=21+1-7=-4<0,f(2)=22+2-7=-1<0,f(3)=23+3-7=4>0所以f(2)·f(3)<0,故函数f(x)的零点所在的一个区间是(2,3),所以整数n的值为2.15、【解析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围16、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解】因为对任意,均存在,使得成立等价于,,.而当时,,故必有由第(2)小题可知,,且,所以,①当时,∴,可得,②当时,∴,可得,③当时,∴或,可得,综上所述,实数的取值范围为18、(1)(2)-7【解析】(1)由的值以及的范围,利用同角三角函数的基本关系即可求的值,进而可得的值,利用两角和的正弦公式求.(2)利用三角函数的定义可求的值,利用正切的二倍角公式可求出的值,再由两角和的正切公式即可求解.【小问1详解】因为,,所以,所以,.【小问2详解】由三角函数的定义可得,由正切的二倍角公式可得,19、(1)(2)见解析(3)当为线段的中点时,满足使平面【解析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面试题解析:()解:∵平面,∴()证明:∵,分别是,的中点∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:当为线段中点时,满足使平面,下面给出证明:取的中点,连接,,∵,∴四点,,,四点共面,由平面,∴,又,,∴平面,∴,又为等腰三角形,为斜边中点,∴,又,∴平面,即平面点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.20、(1)见解析;(2).【解析】(1)由,所以,从而得解;(2)由,所以的最小值即为的最小值,过点O作直线的垂线求垂足即可.【详解】(1)证明:设点的坐标为则由,∴即动点在定直线上(2)由,所以即为所以最小值时,取到最小值.又点在直线上,所以此时直线的方程为,联立直线解得点.21、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论